降维系列算法【主成分分析】

本文详细阐述了主成分分析算法的核心思想与具体步骤,包括数据预处理、协方差矩阵计算、特征值与特征向量求解以及降维过程。主成分分析是一种常用的数据降维技术,旨在通过线性变换将原始数据转换为一组相互独立的新变量,以减少数据维度的同时保留最多的信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

降维系列算法【主成分分析】

【算法思想】

采用线性变换的方法,使用一组互相独立的变量代表数据的统计特性。使第一主成分的方差最大,第二主成分的方差第二,依次类推。

【算法步骤】

(1)获得原始数据矩阵X;

(2)对数据进行标准化,~(0,1);

(3)求解协方差矩阵;

(4)求解协方差矩阵的特征值和特征向量;

(5)将特征值和特征向量按照从大到小的顺序排序;

(6)将原始数据按照特征向量投影到新的位置。

【用途】

降维;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值