nyoj117 求逆序数 归并排序 树状数组 模板题

求逆序数

时间限制: 2000 ms  |  内存限制: 65535 KB
难度: 5
描述

在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。

现在,给你一个N个元素的序列,请你判断出它的逆序数是多少。

比如 1 3 2 的逆序数就是1。

输入
第一行输入一个整数T表示测试数据的组数(1<=T<=5)
每组测试数据的每一行是一个整数N表示数列中共有N个元素(2〈=N〈=1000000)
随后的一行共有N个整数Ai(0<=Ai<1000000000),表示数列中的所有元素。

数据保证在多组测试数据中,多于10万个数的测试数据最多只有一组。
输出
输出该数列的逆序数
样例输入
2
2
1 1
3
1 3 2
样例输出
0
1
来源
第一种 归并排序应用
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
const int MAX=1000010;
long long array[MAX];
long long temp[MAX];
long long count;

void Merge(int l,int mid,int r)//(2)“合并”——将划分后的序列段两两合并后排序。
{
	int i=l;// i是第一段序列的下标 
	int j=mid+1; // j是第二段序列的下标
	int k=l;
	while(i<=mid&&j<=r)// 同时开始扫描第一段和第二段序列,直到有一个扫描结束
	{// 判断第一段和第二段取出的数哪个更小,将其存入合并序列,并继续向下扫描
		if(array[i]>array[j])//第一段大于第二段 
		{
			temp[k++]=array[j++];
			count+=mid-i+1;//移动距离,也就是逆序数的值 
		}
		else if() //第二段大于等于第一段  合理不用改变 
		{
			temp[k++]=array[i++];
		}
	}
	while(i<=mid) // 若第一段序列还没扫描完,将其全部复制到合并序列
	temp[k++]=array[i++];
	
	while(j<=r)  // 若第二段序列还没扫描完,将其全部复制到合并序列
	temp[k++]=array[j++];
	
	for(i=l;i<=r;++i) // 将合并序列复制到原始序列中
	array[i]=temp[i];
}

void Merge_sort(int l,int r)//(1)“分解”——将序列每次折半划分。
{
	if(l<r)
	{
		int mid=(l+r)>>1;//右移一位 相当于除2 
		Merge_sort(l,mid);//递归 
		Merge_sort(mid+1,r);
		Merge(l,mid,r);//左区间, 
	}
}

int main()
{
	int t,i,j,n;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		for(i=0;i<n;i++)
		scanf("%lld",&array[i]);
		count=0;
		Merge_sort(0,n-1);
		printf("%lld\n",count);
	}
	return 0;
}


第二种 树状数组
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define Max 1000005
using namespace std;
int c[Max];//树状数组 
int n;
/*
建立一个结构体包含t和pos, t就是输入的数,pos表示输入的顺序。然后按照t从小到大排序,如果t相等,那么就按照pos排序。
如果没有逆序的话,肯定pos是跟i(表示拍好后的顺序)一直一样的,如果有逆序数,那么有的i和pos是不一样的。
所以,利用树状数组的特性,我们可以简单的算出逆序数的个数。
*/
struct Node{
	int t;
	int pos;
}A[Max];

bool cmp(Node a,Node b)
{
	if(a.t==b.t)
	return a.pos<b.pos;
	return a.t<b.t;
}

int lowbit(int n)
{
	return n&(-n);
}

void add(int i)
{
	while(i<=n)
	{
		c[i]++;//可能有重复元素,所以用++,不用=1; 
		i+=lowbit(i);
	}
}

int sum(int i)//返回数组到i的所有值 
{
	int sum=0;
	while(i>0)
	{
		sum+=c[i];
		i-=lowbit(i);
	}
	return sum;
}


int main()
{
	int T,i,j;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d",&n);
		for(i=1;i<=n;i++)
		{
			scanf("%d",&A[i].t);//值 
			A[i].pos=i;//位置 
		}
		memset(c,0,sizeof(c));
		stable_sort(A+1,A+n+1,cmp);
/*
stable_sort和sort的区别在于 前者作排序可以使原来的"相同"的值在序列中的相对位置不变
如 1 4 6 7 4' (4 和 4'值相等,加上' 表示是2个不同的元素)
那么stable_sort能保证排序完, 4仍然在4'前,即输出1 4 4' 6 7;但是sort没有这个功能,不能保证排序的稳定 
*/
		long long ans=0;
		for(i=1;i<=n;i++)
		{
			add(A[i].pos);
			ans+=i-sum(A[i].pos);
		}
		printf("%lld\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值