图像和视频处理领域通常处理的是最终要呈现在观众面前的信号,例如互联网中的图像和视频。一幅图像或视屏在被呈现在观看者之前可能会经历许多步的处理并且每一步的处理都可能会引入降低其最终显示效果的失真。例如,通过照相设备获得的图像和视频由于光照,传感器噪声,颜色校准,曝光控制,照相设备移动等可能会引入失真。获取之后,图像和视频可能需要进一步的压缩处理以此来减少存储和传输的带宽。这些压缩技术通常通过让信号产生某些失真以此换得所需带宽的的减少。类似的,当图像通过信道传输或存储的时候出现的比特位错误也可能会引入失真。最后,对于输出处理后的图像和视频的显示设备也可能会引入一些像低的再现分辨率和较差的校准等的失真。每一个处理阶段引入失真的多少主要取决于设备的物理限制。
客观图像质量评价的目标是发展可以自动预测图像质量的量化度量方法。一般说来,一种客观图像质量度量方法可以在广泛的应用范围内扮演重要的角色例如图像获取、压缩、通信、显示、打印、恢复、增强、分析和水印。第一,它可以被用于动态监测和调节图像质量。第二,它可以被用于优化算法和图像处理系统的参数设置。第三,它可以被用于作为图像处理系统和算法的基准。
简言之,客观质量评价方法(相对于通过观察者的主观质量评价)希望通过算法来评价图像和视频的质量。客观质量评价研究的目标是设计质量预测与来自于观察者的主观评分尽量一致的算法。
图像和视频客观评价方法可以主要地被分为三类:
- 全参考质量评价方法:该方法可以获取图像或视屏的无失真版本,它被用于与其失真版本做对比。这种无失真版本通常来至于高质量的获取设备并且在它被压缩或传输之前。然而参考图像或视频通常需要更多的资源比起对应的失真版本,因此全参考质量评价方法通常仅被用于作为设计用于实验室内部测试的图像和视频处理算法的工具而不能作为一项实际应用。
- 无参考质量评价方法:该方法只有图像或视频的失真版本并且要在没有其对应的图像和视频的无失真版本的任何先验知识的基础上进行质量评价。因为该方法不需要任何参考信息因此它可以被用于任何需要质量评价的应用中。然而,这种灵活性的代价是就算法可以做出准确的质量预测的能力而言的,或者说是这种方法的应用范围比较有限(例如仅仅针对JPEG图像的无参考质量评价方法等)。
- 部分参考评价方法:该方法用到了图像或视频完整版本的部分信息。通过质降参考数据信道该方法可以获得对应图像和视频的无失真版本的部分信息。质降参考质量评价方法使用这获取的部分信息来判断失真图像和视频的质量。
原文链接是美国德州大学LIVE实验室的有关图像和视频质量评价的一些经典论文和代码。
原文链接:http://live.ece.utexas.edu/research/quality/intro.htm