矩阵的逆、伪逆

1、矩阵的逆

定义:

A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=I 则我们称BA的逆矩阵,而A则被称为可逆矩阵。

可逆条件:

A是可逆矩阵的充分必要条件是,即可逆矩阵就是非奇异矩阵。(当https://i-blog.csdnimg.cn/blog_migrate/bd3b285238dd3f10de7afe1de39c424f.png 时,A称为奇异矩阵)

性质:

  • 矩阵A可逆的充要条件是A的行列式不等于0
  • 可逆矩阵一定是方阵。
  • 如果矩阵A是可逆的,A的逆矩阵是唯一的。
  • 可逆矩阵也被称为非奇异矩阵、满秩矩阵。
  • 两个可逆矩阵的乘积依然可逆。
  • 可逆矩阵的转置矩阵也可逆。
  • 矩阵可逆当且仅当它是满秩矩阵。

求逆方法:

伴随矩阵法、初等变换法

https://i-blog.csdnimg.cn/blog_migrate/f000e05220f1b3d424c3fd170bf38621.png

https://i-blog.csdnimg.cn/blog_migrate/15d26f60fda9abb49f4ddf0cb1604cf0.png

2、矩阵的伪逆和左右逆

伪逆矩阵:

伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但在matlab里可以用函数pinv(A)求其伪逆矩阵。基本语法为X=pinv(A),X=pinv(A,tol),其中tol为误差,pinvpseudo-inverse的缩写:max(size(A))*norm(A)*eps。函数返回一个与A的转置矩阵A' 同型的矩阵X,并且满足:AXA=A,XAX=X.此时,称矩阵X为矩阵A的伪逆,也称为广义逆矩阵。pinv(A)具有inv(A)的部分特性,但不与inv(A)完全等同。  如果A为非奇异方阵,pinv(A)=inv(A),但却会耗费大量的计算时间,相比较而言,inv(A)花费更少的时间。

伪逆矩阵求法:

A m*n矩阵,r代表矩阵的秩:

若矩阵A是方阵,且|A|!=0,则存在AA-1=E

A不是方阵,或者|A|=0,那么只能求A的伪逆,所谓伪逆是通过SVD计算出来的;

pinv(A)表示A是伪逆:

如果A列满秩,列向量线性无关,r=nAx=b为超定方程组,存在0个或1个解,那么https://i-blog.csdnimg.cn/blog_migrate/16f8ee12caf836d561da880dc1352177.png,因为https://i-blog.csdnimg.cn/blog_migrate/54b7dd93afd20068dbfb947545fcea4c.png,因此也称为左逆;

如果A行满秩,行向量线性无关,Ax=b为欠定方程组,存在0个或无穷个解,那么https://i-blog.csdnimg.cn/blog_migrate/fd37f951e011ea21cb7fd89fcd2120cf.png,因为https://i-blog.csdnimg.cn/blog_migrate/1b6a3de4543e2ac8125c8bda01825abb.png,因此也称为右逆;

如果秩亏损,那么只好先做奇异值分解https://i-blog.csdnimg.cn/blog_migrate/ed5a1e3f36926013738cb61827ce04d2.pngU,V是正交阵,D是对角阵;然后取对角阵S,如果D(i,i)=0,那么S(i,i)=0,如果D(i,i)<>0,那么S(i,i)=1/D(i,i)。于是https://i-blog.csdnimg.cn/blog_migrate/6d9b38c379d1c32d244d126b8d915c5c.png

二、矩阵的左逆与最小二乘

关于最小二乘可以参考:最小二乘的几何意义及投影矩阵http://www.cnblogs.com/AndyJee/p/5053354.html

其实,最小二乘就是一个超定方程组的求解问题,根据上述的了解,超定方程组的求解方法之一就是通过求伪逆的形式,具体来说就是求左逆。即:

https://i-blog.csdnimg.cn/blog_migrate/e04bda4aa1f848871c0c420fb689b1a2.png

最小二乘也可以从几何的角度来考虑,那就是下面要说的投影矩阵。

三、左右逆与投影矩阵

左逆中, https://i-blog.csdnimg.cn/blog_migrate/5c3f947d86b7bf30702b46d2cf45a2b9.png,如果将左逆写在A右边将得不到单位矩阵了,那么 https://i-blog.csdnimg.cn/blog_migrate/7ef18ad771fcc70e7f2d1394dcc80961.png是什么?是在A矩阵列空间(A矩阵各列张成的子空间)投影的投影矩阵,它会尽量靠近单位矩阵,一个投影矩阵很想成为单位矩阵,但不可能做到。

右逆中, https://i-blog.csdnimg.cn/blog_migrate/3f29d6b2767c334a9c86471f679ab4a7.png,如果将右逆写在A左边也不是单位矩阵了,那https://i-blog.csdnimg.cn/blog_migrate/0d205d7b6f7b3b1f4e98358612238ae4.png是什么?是在A矩阵行空间(A矩阵各行张成的子空间)投影的投影矩阵。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值