问题描述: 希望利用R语言探究某个植物功能性状在不同功能型中的差异是否显著?若显著希望能够分组。
问题分析:
探究Trait(植物功能性状)在不同PFT(植物功能型分类)中的差异可以采用多种统计和数据可视化方法。以下是一些常用的方法:
- 描述性统计分析
- 均值和标准差:计算每个PFT中Trait的均值和标准差,提供初步的差异感知。
- 中位数和四分位范围:了解数据的中心趋势和分布范围,特别是对于偏态分布的数据。
- 数据可视化
- 箱线图(Boxplots):展示不同PFT中Trait的分布、中位数、四分位数和异常值,直观比较组间差异。
- 小提琴图(Violin Plots):类似箱线图,但提供了关于数据分布密度的更多信息。
- 散点图(Scatter Plots):如果Trait是连续的,散点图可以用来展示不同PFT间的关系或聚类。
- 柱状图(Bar Charts):展示不同PFT中Trait均值或中位数的比较。
- 统计检验
- ANOVA(方差分析):用于判断两个或两个以上样本均值是否存在显著差异。
- Kruskal-Wallis H检验:非参数方法,用于不满足正态分布假设的数据的组间比较。
- Mann-Whitney U检验:两个独立样本的非参数检验,用于比较两个PFT中Trait的分布差异。
- 多变量分析
- 主成分分析(PCA):如果Trait包含多个变量,PCA可以用来降维并识别哪些变量最能解释数据的差异。
- 聚类分析:基于Trait的值,对植物进行聚类,以发现潜在的PFT群体。
在求算完是否显著后,可以通过字母标记(Letter-based representations)来标注和表示统计学上的相似性或显著性差异,可以方便直观地识别哪些组是统计学上相似的
- 沃勒邓肯检验(Tukey’s HSD test)
- 邓肯检验(Duncan’s test)
1.1.2.1 剔除异常值
常用的剔除异常值的方法包括:
-
标准差法(Standard Deviation Method): 这种方法假设数据呈正态分布。通常,会剔除那些比平均值大或小若干标准差(例如,3个标准差)的数据点。具体来说,如果数据点满足以下条件之一,则被视为异常值:
- 数据点<(平均值−k×标准差)
- 数据点>(平均值+k×标准差)
其中,k通常取值2或3。
-
四分位数(Interquartile Range, IQR)法: 此方法不要求数据呈正态分布,适用于更广泛的场景。首先计算数据的第一四分位数(Q1)和第三四分位数(Q3),然后计算IQR&