语音识别whisper

Whisper是一个通用的语音识别模型,它使用了大量的多语言和多任务的监督数据来训练,能够在英语语音识别上达到接近人类水平的鲁棒性和准确性1。Whisper还可以进行多语言语音识别、语音翻译和语言识别等任务2。Whisper的架构是一个简单的端到端方法,采用了编码器-解码器的Transformer模型,将输入的音频转换为对应的文本序列,并根据特殊的标记来指定不同的任务2。

要使用Whisper模型,您需要安装Python 3.8-3.10和PyTorch 1.10.1或更高版本,以及一些其他的Python包,如HuggingFace Transformers和ffmpeg-python2。您还需要在您的系统上安装ffmpeg命令行工具2。您可以使用pip命令来安装或更新Whisper包,如下所示:

pip install -U openai-whisper

安装完成后,您可以使用edge_tts.Communicate类来创建一个Whisper对象,并调用其transcribe方法来对音频文件进行语音识别3。例如,以下代码可以对一个英语音频文件进行语音识别,并打印出结果:

import edge_tts tts = edge_tts.Communicate() result = tts.transcribe(‘english_audio.wav’) print(result)

如果您想对其他语言的音频文件进行语音识别或翻译,您可以在创建Whisper对象时指定language参数,如下所示:

tts = edge_tts.Communicate(language=‘zh-CN’) # for Chinese speech recognition tts = edge_tts.Communicate(language=‘zh-CN-en’) # for Chinese to English speech translation

更多关于Whisper模型和使用方法的细节,请参考以下链接:

Blog

Paper

Model card

Code

Colab example

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

caridle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值