PyTorch随笔 - PyTorch 参数模型转换为 PT 模型

本文介绍了如何将PyTorch的.pth.tar参数模型转换为PT模型,以便于部署和转化为TRT模型。转换过程中包括加载.pth.tar模型,模拟输入并保存为pt模型,确保转换前后输出一致。详细步骤和验证过程都在提供的转换脚本中,最终生成的GPU版本PT模型可在指定文件夹找到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当PyTorch模型需要部署到服务时,为了提升访问速度,需要转换为TRT模型,再进行部署。在转换为TRT模型之前,需要将PyTorch参数模型(如pth.tar)转换为pt模型,使用jit形式。pt模型 = 参数模型(pth.tar) + 网络结构(如resnet50)。使用pt模型,可以简化使用方式,同时也方便转换为trt模型,进行轻量级部署。在转换函数中,包含验证逻辑,保证转换前后的模型效果一致,即输出不变。

以图像分类框架pytorch-image-models-my为例,将PyTorch的pth.tar模型转换为PT模型。

转换流程如下:

  1. 加载pth.tar模型model,model达到可以预测的标准,即:
# 加载模型
model = timm.create_model
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值