LLM - 大语言模型的自注意力(Self-Attention)机制基础 概述

本文介绍了自注意力机制在大语言模型中的重要性,详细阐述了Transformer的架构,包括编码器和解码器的子层。讨论了GPT中的位置编码,特别是三角式位置编码如何处理相对位置信息。接着,介绍了LLaMA中的旋转式位置编码(RoPE)与Transformer绝对位置编码的区别。此外,还探讨了ReFormer的局部敏感哈希和可逆残差层在优化注意力计算上的作用,以及FlashAttention如何加速注意力机制的计算。
摘要由CSDN通过智能技术生成

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/136623432

Attention

注意力(Attention)机制是大型语言模型中的一个重要组成部分,帮助模型决定在处理信息时,所应该关注的部分。在自然语言处理中,一个序列由一系列的元素组成。注意力机制通过为序列中的每个元素分配一个权重来工作,这个权重反映了每个元素对于任务的重要性。模型会更加关注权重高的元素。自注意力(Self-Attention)是一种特殊的注意力机制,不是将输入序列与输出序列关联起来,而是关注序列内部元素之间的关系。

1. Transformer

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值