表格类作文

The table gives a breakdown of the different type of family who were living in poverty in Australia in 1999.

On average,
11% of all households, comprising almost two million people, were in this position. However, those consisting of only one parent or a single adult had almost doubt this proportion of poor people, with 21% and 19% respectively.

Couples generally tended to be better off , with lower poverty levels for couples without children (7%) than those with children (12%). It is noticeable that for both types of household with children, a higher than average proportion were living in poverty at this time.

Older people were generally less likely to be poor, though once again the trend favoured eldery couples (only 4%) rather than single eldery people (6%).
Overall the table suggests that households of single adults and those with children were more likely to be living in poverty than those consisting of couples.

 

 


Written by me:

 

The proporation if various types of families who live in poor in Austraian in 1999 varies a lot,as is shown in the below table.seven types of famlily and its porporation and numbers of people who live in poverity are given.

 

From the table it shows that the aged comple and single aged person have the fewest poor poplulation,with 4% and 6% respectively.While on the other hand,sole parent has a proporation of 21% which is 232000 in number,considering as the top position.19% of single and no children family type lives in poverity.

 

Among all,all household has the largest number,although only got 11% but with a number of 1183700.Also,The table suggests that the households of single adults and those with chilidren were most likely to be living in proverty.

 

字数不够!!!(总结没加)

背景--》总--》 分--》分--》总。

 

 

 

 

### 使用网络爬虫采集高中作文素材的方法 为了合法合规地使用网络爬虫抓取数据,首先需要了解目标网站的 `robots.txt` 文件规定的内容[^1]。该文件明确了搜索引擎或其他程序允许访问和禁止访问的页面范围。如果计划抓取的数据涉及版权保护或者违反了网站的规定,则可能面临法律风险。 以下是实现这一功能的技术方法: #### 1. 配置爬虫遵循 robots.txt 协议 在编写爬虫之前,应先读取并解析目标站点的 `robots.txt` 文件,确认其是否允许对特定路径进行抓取操作。Python 中可以借助第三方库如 `robotparser` 来完成此任务。 ```python from urllib.robotparser import RobotFileParser rp = RobotFileParser() url_robots_txt = 'https://example.com/robots.txt' # 替换为目标网站的实际地址 rp.set_url(url_robots_txt) rp.read() can_fetch = rp.can_fetch('*', '/high-school-essays/') # 测试指定 URL 是否可被获取 print(can_fetch) ``` 只有当返回值为 True 时才继续执行后续逻辑;否则应当停止进一步尝试以免触犯规则。 #### 2. 编写基本爬虫脚本 假设已经获得许可,在 Python 中可以通过 Scrapy 或 Requests 库来构建基础框架用于提取所需信息。下面展示了一个简单例子: ```python import requests from bs4 import BeautifulSoup def fetch_high_school_essay(url): headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'} response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser') essays = [] for article in soup.find_all('div', class_='article'): # 假设文章存储于此标签下 title = article.h2.a.string.strip() # 获取标题 content = article.p.string.strip() # 提取消息正文 essay_data = { "title": title, "content": content } essays.append(essay_data) return essays result = fetch_high_school_essay('http://target-site.example/highschool/') for item in result: print(f"{item['title']}\n{item['content']}") ``` 上述代码片段展示了如何通过发送 HTTP 请求到服务器端口,并利用 HTML 解析器 Beautiful Soup 抽取出每篇文章的相关字段(比如题目与主体)。注意调整 CSS Selectors 和其他参数以适配实际的目标结构。 #### 3. 存储收集到的信息 最后一步就是把得到的结果保存下来供以后分析处理。可以选择多种方式储存这些资料,例如 JSON 格式的文档数据库 MongoDB、关系型 SQL 表格 MySQL 等等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

惹不起的程咬金

来都来了,不赏点银子么

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值