语音分离 | SPMAMBA: STATE-SPACE MODEL IS ALL YOU NEED IN SPEECH SEPARATION

本文提出SPMamba,一种结合了BLSTM与Mamba模块的语音分离网络,利用状态空间模型改善了长序列处理和计算效率。实验结果显示,SPMamba在保持先进性能的同时,参数少、计算复杂度低,显著优于TF-GridNet模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、文章摘要

        在语音分离方面,基于CNN和Transformer的模型都展示了强大的分离能力,在研究界引起了极大的关注。然而,基于cnn的方法对长序列音频的建模能力有限,导致分离性能不理想。而基于Transformer的方法由于计算复杂度高,在实际应用中也受到限制。值得注意的是,在计算机视觉中,基于Mamba的方法以其强大的性能和减少的计算需求而闻名。本文,提出了一种使用状态空间模型的语音分离网络架构,称之为SPMamba。

二、本文方法

2.1 TF-GridNet

        本文在TF-GridNet[1] 基础上把BLSTM替换为一个双向曼巴模块,旨在捕获更广泛的上下文信息。

TF-GridNet 模型-1

TF-Gr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值