在之前的文章1中讨论了与循环坐标相对应的动量守恒定律和动量矩守恒定律,本文将由拉格朗日方程中导出能量函数,进一步讨论能量守恒定律,并给出耗散系统的处理方法,这其中用到的一个关键数学定理是欧拉定理(描述如何将一个齐次函数分解的定理)。
从如下拉格朗日量开始我们的讨论:
L
(
q
i
,
q
˙
i
,
t
)
L(q_i,\dot{q}_i,t)
L(qi,q˙i,t)
它对时间的全微分是:
d
L
d
t
=
∂
L
∂
t
+
∑
i
∂
L
∂
q
˙
i
d
q
˙
i
d
t
+
∑
i
∂
L
∂
q
i
d
q
i
d
t
(
2.49
)
\frac{{\rm d} L}{{\rm d} t} = \frac{\partial L}{\partial t} + \sum_i \frac{\partial L}{\partial \dot{q}_i} \frac{{\rm d} \dot{q}_i}{{\rm d} t} + \sum_i \frac{\partial L}{\partial q_i} \frac{{\rm d} q_i}{{\rm d} t} \qquad (2.49)
dtdL=∂t∂L+i∑∂q˙i∂Ldtdq˙i+i∑∂qi∂Ldtdqi(2.49)
结合拉格朗日方程:
∑
i
(
d
d
t
∂
L
∂
q
˙
i
−
∂
L
∂
q
i
)
=
0
(
2.50
)
\sum_i \left( \frac{{\rm d} }{{\rm d} t} \frac{\partial L}{\partial {\dot q}_i} - \frac{\partial L}{\partial q_i} \right) =0 \qquad (2.50)
i∑(dtd∂q˙i∂L−∂qi∂L)=0(2.50)
由拉格朗日方程(2.50)可知:
∂
L
∂
q
i
=
d
d
t
∂
L
∂
q
˙
i
(
2.5
0
′
)
\frac{\partial L}{\partial q_i} = \frac{{\rm d} }{{\rm d} t} \frac{\partial L}{\partial {\dot q}_i} \qquad (2.50')
∂qi∂L=dtd∂q˙i∂L(2.50′)
代入(2.49):
d
L
d
t
=
∂
L
∂
t
+
∑
i
∂
L
∂
q
˙
i
d
q
˙
i
d
t
+
∑
i
q
˙
i
d
d
t
∂
L
∂
q
˙
i
(
2.51
)
\frac{{\rm d} L}{{\rm d} t} = \frac{\partial L}{\partial t} + \sum_i \frac{\partial L}{\partial \dot{q}_i} \frac{{\rm d} \dot{q}_i}{{\rm d} t} + \sum_i \dot{q}_i \frac{{\rm d} }{{\rm d} t} \frac{\partial L}{\partial {\dot q}_i} \qquad (2.51)
dtdL=∂t∂L+i∑∂q˙i∂Ldtdq˙i+i∑q˙idtd∂q˙i∂L(2.51)
(2.51)也可写为:
d
L
d
t
=
∂
L
∂
t
+
∑
i
d
d
t
(
q
˙
i
∂
L
∂
q
˙
i
)
⇒
∂
L
∂
t
+
∑
i
d
d
t
(
q
˙
i
∂
L
∂
q
˙
i
−
L
)
=
0
(
2.5
1
′
)
\frac{{\rm d} L}{{\rm d} t} = \frac{\partial L}{\partial t} + \sum_i \frac{{\rm d} }{{\rm d} t} \left( \dot{q}_i \frac{\partial L}{\partial {\dot q}_i} \right) \Rightarrow \\ \frac{\partial L}{\partial t} + \sum_i \frac{{\rm d} }{{\rm d} t} \left( \dot{q}_i \frac{\partial L}{\partial {\dot q}_i} - L \right) = 0 \qquad (2.51')
dtdL=∂t∂L+i∑dtd(q˙i∂q˙i∂L)⇒∂t∂L+i∑dtd(q˙i∂q˙i∂L−L)=0(2.51′)
根据(2.51’),我们引入能量函数(energy function):
h
=
∑
i
q
˙
i
∂
L
∂
q
˙
i
−
L
h = \sum_i \dot{q}_i \frac{\partial L}{\partial {\dot q}_i} - L
h=i∑q˙i∂q˙i∂L−L
于是(2.51’)写为:
−
∂
L
∂
t
=
d
h
d
t
- \frac{\partial L}{\partial t} = \frac{{\rm d} h}{{\rm d} t}
−∂t∂L=dtdh
如果拉格朗日量
L
L
L不显含时间
t
t
t(即时间仅在
q
i
q_i
qi和
q
˙
i
\dot{q}_i
q˙i中隐含),则力学系统的能量守恒:
h
=
c
o
n
s
t
h = {\rm const}
h=const
通过拉格朗日函数的齐次分解,并采用欧拉定理(Euler’s theorem,见本文附录)对 h h h进行分解,可以证明 h = T + V h=T+V h=T+V 就是总机械能。于是我们得到结论:如果势函数不显含时间(即拉格朗日量也不显含时间),则力学系统的总机械能守恒。
2. 非保守系统(耗散函数为Rayleigh函数的情况)
对于非保守系统而言,摩擦力可以由耗散函数
F
\mathcal{F}
F导出,并且很容易看出
F
\mathcal{F}
F与
h
h
h的衰减有关。当存在耗散力时,我们已经讨论了拉格朗日方程(文章1的(1.70)):
d
d
t
∂
L
∂
q
˙
j
−
∂
L
∂
q
j
=
−
∂
F
∂
q
˙
j
(
1.70
)
\frac{{\rm d} }{{\rm d} t} \frac{\partial L}{\partial {\dot q}_j} - \frac{\partial L}{\partial q_j} = - \frac{\partial {\mathcal F}}{\partial {\dot q}_j} \qquad (1.70)
dtd∂q˙j∂L−∂qj∂L=−∂q˙j∂F(1.70)
与之相对应的使用
h
h
h表述的方程为:
∂
L
∂
t
+
d
h
d
t
=
∑
j
∂
F
∂
q
˙
j
q
˙
j
(
2.5
9
′
)
\frac{\partial L}{\partial t} + \frac{{\rm d} h}{{\rm d} t} = \sum_j \frac{\partial {\mathcal F}}{\partial {\dot q}_j} \dot{q}_j \qquad (2.59')
∂t∂L+dtdh=j∑∂q˙j∂Fq˙j(2.59′)
已知耗散函数取Rayleigh函数时(文章1(1.67’)),
F
\mathcal{F}
F是广义速度
q
˙
j
\dot{q}_j
q˙j的二次函数,因此可以对上式右端应用欧拉定理,等于
2
F
2\mathcal{F}
2F,于是(2.59’)写为:
∂
L
∂
t
+
d
h
d
t
=
−
2
F
\frac{\partial L}{\partial t} + \frac{{\rm d} h}{{\rm d} t} = -2\mathcal{F}
∂t∂L+dtdh=−2F
如果 L L L不显含时间(即 ∂ L / ∂ t = 0 \partial L / \partial t =0 ∂L/∂t=0),则耗散函数取Rayleigh函数时,机械能 h h h的耗散速率是 2 F 2\mathcal{F} 2F。
附录:欧拉定理(Euler’s theorem)
欧拉定理给出了函数
f
f
f的分解方法,它是说:如果有函数
f
=
f
(
x
i
)
f = f(x_i)
f=f(xi)是
x
i
x_i
xi的
n
n
n阶齐次函数,则
x
i
x_i
xi与
∂
f
/
∂
x
i
\partial f/ \partial x_i
∂f/∂xi的乘积之和可以写为
n
f
nf
nf:
∑
i
x
i
∂
f
∂
x
i
=
n
f
\sum_i x_i \frac{\partial f}{\partial x_i} = nf
i∑xi∂xi∂f=nf