能量函数和能量守恒

在之前的文章1中讨论了与循环坐标相对应的动量守恒定律和动量矩守恒定律,本文将由拉格朗日方程中导出能量函数,进一步讨论能量守恒定律,并给出耗散系统的处理方法,这其中用到的一个关键数学定理是欧拉定理(描述如何将一个齐次函数分解的定理)。

从如下拉格朗日量开始我们的讨论:
L ( q i , q ˙ i , t ) L(q_i,\dot{q}_i,t) L(qi,q˙i,t)

它对时间的全微分是:
d L d t = ∂ L ∂ t + ∑ i ∂ L ∂ q ˙ i d q ˙ i d t + ∑ i ∂ L ∂ q i d q i d t ( 2.49 ) \frac{{\rm d} L}{{\rm d} t} = \frac{\partial L}{\partial t} + \sum_i \frac{\partial L}{\partial \dot{q}_i} \frac{{\rm d} \dot{q}_i}{{\rm d} t} + \sum_i \frac{\partial L}{\partial q_i} \frac{{\rm d} q_i}{{\rm d} t} \qquad (2.49) dtdL=tL+iq˙iLdtdq˙i+iqiLdtdqi(2.49)

结合拉格朗日方程:
∑ i ( d d t ∂ L ∂ q ˙ i − ∂ L ∂ q i ) = 0 ( 2.50 ) \sum_i \left( \frac{{\rm d} }{{\rm d} t} \frac{\partial L}{\partial {\dot q}_i} - \frac{\partial L}{\partial q_i} \right) =0 \qquad (2.50) i(dtdq˙iLqiL)=0(2.50)

由拉格朗日方程(2.50)可知:
∂ L ∂ q i = d d t ∂ L ∂ q ˙ i ( 2.5 0 ′ ) \frac{\partial L}{\partial q_i} = \frac{{\rm d} }{{\rm d} t} \frac{\partial L}{\partial {\dot q}_i} \qquad (2.50') qiL=dtdq˙iL(2.50)

代入(2.49):
d L d t = ∂ L ∂ t + ∑ i ∂ L ∂ q ˙ i d q ˙ i d t + ∑ i q ˙ i d d t ∂ L ∂ q ˙ i ( 2.51 ) \frac{{\rm d} L}{{\rm d} t} = \frac{\partial L}{\partial t} + \sum_i \frac{\partial L}{\partial \dot{q}_i} \frac{{\rm d} \dot{q}_i}{{\rm d} t} + \sum_i \dot{q}_i \frac{{\rm d} }{{\rm d} t} \frac{\partial L}{\partial {\dot q}_i} \qquad (2.51) dtdL=tL+iq˙iLdtdq˙i+iq˙idtdq˙iL(2.51)

(2.51)也可写为:
d L d t = ∂ L ∂ t + ∑ i d d t ( q ˙ i ∂ L ∂ q ˙ i ) ⇒ ∂ L ∂ t + ∑ i d d t ( q ˙ i ∂ L ∂ q ˙ i − L ) = 0 ( 2.5 1 ′ ) \frac{{\rm d} L}{{\rm d} t} = \frac{\partial L}{\partial t} + \sum_i \frac{{\rm d} }{{\rm d} t} \left( \dot{q}_i \frac{\partial L}{\partial {\dot q}_i} \right) \Rightarrow \\ \frac{\partial L}{\partial t} + \sum_i \frac{{\rm d} }{{\rm d} t} \left( \dot{q}_i \frac{\partial L}{\partial {\dot q}_i} - L \right) = 0 \qquad (2.51') dtdL=tL+idtd(q˙iq˙iL)tL+idtd(q˙iq˙iLL)=0(2.51)

根据(2.51’),我们引入能量函数(energy function):
h = ∑ i q ˙ i ∂ L ∂ q ˙ i − L h = \sum_i \dot{q}_i \frac{\partial L}{\partial {\dot q}_i} - L h=iq˙iq˙iLL

于是(2.51’)写为:
− ∂ L ∂ t = d h d t - \frac{\partial L}{\partial t} = \frac{{\rm d} h}{{\rm d} t} tL=dtdh

如果拉格朗日量 L L L不显含时间 t t t(即时间仅在 q i q_i qi q ˙ i \dot{q}_i q˙i中隐含),则力学系统的能量守恒:
h = c o n s t h = {\rm const} h=const

通过拉格朗日函数的齐次分解,并采用欧拉定理(Euler’s theorem,见本文附录)对 h h h进行分解,可以证明 h = T + V h=T+V h=T+V 就是总机械能。于是我们得到结论:如果势函数不显含时间(即拉格朗日量也不显含时间),则力学系统的总机械能守恒

2. 非保守系统(耗散函数为Rayleigh函数的情况)

对于非保守系统而言,摩擦力可以由耗散函数 F \mathcal{F} F导出,并且很容易看出 F \mathcal{F} F h h h的衰减有关。当存在耗散力时,我们已经讨论了拉格朗日方程(文章1的(1.70)):
d d t ∂ L ∂ q ˙ j − ∂ L ∂ q j = − ∂ F ∂ q ˙ j ( 1.70 ) \frac{{\rm d} }{{\rm d} t} \frac{\partial L}{\partial {\dot q}_j} - \frac{\partial L}{\partial q_j} = - \frac{\partial {\mathcal F}}{\partial {\dot q}_j} \qquad (1.70) dtdq˙jLqjL=q˙jF(1.70)

与之相对应的使用 h h h表述的方程为:
∂ L ∂ t + d h d t = ∑ j ∂ F ∂ q ˙ j q ˙ j ( 2.5 9 ′ ) \frac{\partial L}{\partial t} + \frac{{\rm d} h}{{\rm d} t} = \sum_j \frac{\partial {\mathcal F}}{\partial {\dot q}_j} \dot{q}_j \qquad (2.59') tL+dtdh=jq˙jFq˙j(2.59)

已知耗散函数取Rayleigh函数时(文章1(1.67’)), F \mathcal{F} F是广义速度 q ˙ j \dot{q}_j q˙j的二次函数,因此可以对上式右端应用欧拉定理,等于 2 F 2\mathcal{F} 2F,于是(2.59’)写为:
∂ L ∂ t + d h d t = − 2 F \frac{\partial L}{\partial t} + \frac{{\rm d} h}{{\rm d} t} = -2\mathcal{F} tL+dtdh=2F

如果 L L L不显含时间(即 ∂ L / ∂ t = 0 \partial L / \partial t =0 L/t=0),则耗散函数取Rayleigh函数时,机械能 h h h的耗散速率是 2 F 2\mathcal{F} 2F

附录:欧拉定理(Euler’s theorem)

欧拉定理给出了函数 f f f的分解方法,它是说:如果有函数 f = f ( x i ) f = f(x_i) f=f(xi) x i x_i xi n n n阶齐次函数,则 x i x_i xi ∂ f / ∂ x i \partial f/ \partial x_i f/xi的乘积之和可以写为 n f nf nf
∑ i x i ∂ f ∂ x i = n f \sum_i x_i \frac{\partial f}{\partial x_i} = nf ixixif=nf

参考资料

文章1:速度相关势和Rayleigh耗散势函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值