论文阅读记录 |Uncertainty-informed Mutual Learning for JointMedical Image Classification and Segmentation

论文链接:https://link.springer.com/chapter/10.1007/978-3-031-43901-8_4

代码链接:https://github.com/KarryRen/UML

  • Abstract
    • 背景:  分类和分割在医学图像分析中至关重要,因为它们能够实现准确的诊断和疾病监测。

    • 局限性:

      • 现有方法通常优先考虑特征的相互学习和模型参数的共享,而忽略了特征和性能的可靠性。

      • 现有的基于不确定性估计的方法只关注医学图像分类或分割中的不确定性,并未考虑像素级和图像级的不确定性如何帮助提高相互学习的性能和可靠性。

    • 本文贡献:

      • 提出不确定性知情互学习 (UML) 框架

        • 用于可靠和可解释的医学图像分析。

        • 引入联合分类和分割任务的可靠性,通过具有不确定性的相互学习来提高性能。

      • 使用证据深度学习提供置信度

        • 提供图像级和像素级的置信度。

      • 构建不确定性导航器

        • 更好地使用相互特征并生成分割结果。

      • 提出不确定性教师

        • 筛选可靠的掩码进行分类。

      • 置信度估计

        • UML 能够对每条链接的特征和性能产生置信度估计(分类和分割)。

      • 实验结果

        • 在公共数据集上的实验表明,UML 在准确性和鲁棒性方面优于现有方法。

  • Introduction

    • 准确和稳健的医学图像分割和分类对于临床治疗和诊断具有重要价值意义。然而,提高医学图像分析的可靠性和可解释性仍然需要继续研究。

    • 很多研究者通过共享模型参数或任务交互的方式协同分析分类和分割这两个子任务。然而,将可靠性引入协作分类和分割的研究,相对较少。为医学图像分析模型引入不确定性是一种提高可靠性的潜在方法。

    • 现有的基于不确定性估计的方法 (列举) 只关注医学图像分类或分割中的不确定性,并且未充分考虑像素级和图像级的不确定性对提高相互学习性能的影响作用。

  • Method

    • 分类不确定性估计:

      • 目标:通过一种被称为”主观逻辑“的方法来估计图像分类结果的不确定性;

      • 分类结果:model给出的所属class

      • 总不确定性U^c:分类结果不确定性的度量,反映模型对分类结果信心的缺乏程度

      • 重要关系:分配给每个class的信念值b_k^c和整体的不确定性U^c的总和为1

    • 分割不确定性估计

    • 用于分割的不确定性导航器---->通过考虑不确定性,分割结果更可靠,可以有效地提升分割精度

      • 利用初步分割结果和不确定性生成一个更可靠的分割掩码。

      • 利用这个可靠掩码和卷积操作,结合其他中间特征,生成最终的可靠分割特征。

    • 用于分类的不确定性指引器 UI

    • 相互学习的过程---端到端,通过一个共同的损失函数来监督分类和分割的最终结果

      • 初始分割结果和像素级不确定性估计

      • 分类损失

      • 分割结果的深度监督

      • 整体损失函数

  • Experiments

    • 本文在两个数据集 REFUGE 和 ISPY-1 上评估所提出的UML 网络;

    • 作者将UML方法分别与单任务方法和多任务方法进行了比较;

    • 采用ACC、F1 Score作为分类任务的评估标准,为分割任务选择Dice Score和ASSD作为评价指标;

    • UML在 ACC和 F1 Score中取得了最好的分类性能;

    • 通过在输入的医学图像中引入了具有不同标准偏差 (σ) 的高斯噪声,进一步验证模型的可靠性。可以观察到,在向原始数据添加噪声后,分类和分割的准确性显著降低。然而,得益于不确定性引导交互学习的指导,UML 展示较好的效果;

    • Ablation Study:所提出的 UN 和 UI 在可信相互学习中都起着重要作用。UN 和 UI 的引入将模型的可靠性提高到更高的水平。

  • Conclusion

    • 本文提出了一种新颖的深度学习方法,UML,用于医学图像的分类和分割联合任务。

    • 该方法旨在通过增强基于证据深度学习的图像级和像素级可靠性估计,提高医学图像分类和分割的可靠性和可解释性,同时利用我们提出的UN(不确定性导航器)和UI(不确定性指导器)模块进行互学习。

    • 文章进行了广泛的实验,结果表明UML优于基线方法,并在分类和分割方面都引入了显著的改进。

  • 收获:这篇文章的思路很棒,最主要的是论文写的很好,能让人读懂,学习到了很多新的理论知识,设计很巧妙,很有启发意义!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值