模糊数学笔记:八、模糊数及其运算性质

模糊数是模糊代数的基础,在其基础之上可以继续重构许多经典数学的理论。但也正由于它的基础性,故而其理论性的内容相对较多。本文旨在抛开模糊数的相关复杂理论,直接从计算过程出发讨论,以便各位同学迅速掌握。

1、区间数
  • 定义: 实数轴上的区间(闭区间、开区间或半开半闭区间) I I I 被称为一个区间数。区间数通常是指闭区间数。如 I = [ a , b ] I= [a,b] I=[a,b] 称为一个闭区间数。

  • 运算法则:设 I = [ a , b ] I=[a, b] I=[a,b] I = [ c , d ] I=[c, d] I=[c,d]为两个闭区间数,则

    • 倒数: 1 I 2 = [ 1 d , 1 c ] ( 0 ∉ [ c , d ] ) \quad \frac{1}{I_{2}}=\left[\frac{1}{d}, \frac{1}{c}\right] \quad(0 \notin[c, d]) I21=[d1,c1](0/[c,d])
    • 加法: I 1 + I 2 = [ a + c , b + d ] \quad I_{1}+I_{2}=[a+c, b+d] I1+I2=[a+c,b+d]
    • 减法: I 1 − I 2 = [ a − d , b − c ] \quad I_{1}-I_{2}=[a-d, b-c] I1I2=[ad,bc]
    • 乘法 I 1 × I 2 = [ min ⁡ ( a c , a d , b c , b d ) , max ⁡ ( a c , a d , b c , b d ) ] I_{1} \times I_{2}=[\min(a c, a d, b c, b d), \max(a c, a d, b c, b d)] I1×I2=[min(ac,ad,bc,bd),max(ac,ad,bc,bd)]
    • 除法 : I 1 ÷ I 2 = I 1 × 1 I 2 = [ a , b ] × [ 1 d , 1 c ] I_{1} \div I_{2}=I_{1} \times \frac{1}{I_{2}}=[a, b] \times\left[\frac{1}{d}, \frac{1}{c}\right] I1÷I2=I1×I21=[a,b]×[d1,c1]
    • “并”: I 1 ∨ I 2 = [ a ∨ c , b ∨ d ] I_{1} \vee I_{2}=[a \vee c, b \vee d] I1I2=[ac,bd]
    • "交” I 1 ∧ I 2 = [ a ∧ c , b ∧ d ] I_{1} \wedge I_{2}=[a \wedge c, b \wedge d] I1I2=[ac,bd]

:上述运算法则的规律其实十分明显,对应的四则运算主要是对其端点进行处理,通常处理完成后保证较小的结果为新的左端点,较大结果为新的右端点即可。

  • 例:

设闭区间数I = [1, 3], J=[2,5],则

I + J = [ 1 + 2 , 3 + 5 ] = [ 3 , 8 ] {I}+{J}=[{1}+{2}, {3}+{5}]=[{3}, {8}] I+J=[1+2,3+5]=[3,8]

I − J = [ 1 − 5 , 3 − 2 ] = [ − 4 , 1 ] {I}-{J}=[{1}-{5}, {3}-{2}]=[{- 4}, {1}] IJ=[15,32]=[4,1]

I ÷ J = [ 1 , 3 ] × [ 0.2 , 0.5 ] = [ min ⁡ ( 0.2 , 0.5 , 0.6 , 1.5 ) , max ⁡ ( 0.2 , 0.5 , 0.6 , 1.5 ) ] = [ 0.2 , 1.5 ] {I} \div {J}=\left[1, 3\right] \times \left[0.2, 0.5\right]=[\min(0.2,0.5,0.6,1.5), \max(0.2,0.5,0.6,1.5)]=[0.2,1.5] I÷J=[1,3]×[0.2,0.5]=[min(0.2,0.5,0.6,1.5),max(0.2,0.5,0.6,1.5)]=[0.2,1.5]

I ∧ J = [ 1 ∧ 2 , 3 ∧ 5 ] = [ 1 , 3 ] {I} \wedge {J}=[1 \wedge 2,3 \wedge 5]=[1,3] IJ=[12,35]=[1,3]

2、模糊数
  • 定义:实数论域 R R R 上的正则凸模糊集称为模糊数,正则闭凸模糊集称为闭模糊数,正则有界闭凸模糊集称为有界闭模糊数。

:对应区间数的概念理解这一问题十分简单而从上述定义来看,模糊数的定义则更为宽泛.

3、模糊数的运算法则
  • 抽象定义(离散型)

A ∗ B = ∑ x ⋁ x 1 ∗ x 2 = x ( A ( x 1 ) ∧ B ( x 2 ) ) x A * B=\sum_{x} \frac{\bigvee_{x_1*x_2=x} \left(A\left(x_{1}\right) \wedge B\left(x_{2}\right)\right)}{x} AB=xxx1x2=x(A(x1)B(x2))

这里 ∗ * 表示任意运算符。该式子看起来比较抽象,这里稍作分析:

  • 式子中 x x x 表示运算后的结果
  • 分子部分是该结果对应的隶属度
  • 仔细分析 ⋁ x 1 ∗ x 2 = x \bigvee_{x_1*x_2=x} x1x2=x 的含义,不难理解,它表示这里要列举出一切结果为 x x x x 1 x_1 x1 x 2 x_2 x2

那么综上,这个式子的含义即是,对任意两个模糊数(本质上是模糊子集),给定某种元素的运算,取该运算结果相同的组合中两个元素隶属度取小后的最大值为该运算结果的隶属度。这句话很绕,下面先写出四则运算的定义,再以具体例子说明。

  • 四则运算

( A + B ) ( z ) = ⋁ x + y = z ( A ( x ) ∧ B ( y ) ) ( A − B ) ( z ) = ⋁ x − z = z ( A ( x ) ∧ B ( y ) ) ( A × B ) ( z ) = ⋁ x × y = z ( A ( x ) ∧ B ( y ) ) ( A ÷ B ) ( z ) = ⋁ x ÷ y = z ( A ( x ) ∧ B ( y ) ) (A+B)(z)=\bigvee_{x+y=z}(A(x) \wedge B(y)) \\ (A-B)(z)=\bigvee_{x-z=z}(A(x) \wedge B(y)) \\ (A \times B)(z)=\bigvee_{x\times y=z}(A(x) \wedge B(y)) \\ (A \div B)(z)=\bigvee_{x \div y=z}(A(x) \wedge B(y)) (A+B)(z)=x+y=z(A(x)B(y))(AB)(z)=xz=z(A(x)B(y))(A×B)(z)=x×y=z(A(x)B(y))(A÷B)(z)=x÷y=z(A(x)B(y))

  • 例: 给定两个模糊数

2 ‾ = 0.4 1 + 1 2 + 0.7 3 , 3 ‾ = 0.5 2 + 1 3 + 0.6 4 \underline{2}=\frac{0.4}{1}+\frac{1}{2}+\frac{0.7}{3}, \quad \underline{3}=\frac{0.5}{2}+\frac{1}{3}+\frac{0.6}{4} 2=10.4+21+30.7,3=20.5+31+40.6

2 ‾ − 3 ‾ = ∑ x ⋁ x 1 − x 2 = x ( 2 ‾ ( x 1 ) ∧ 3 ‾ ( x 2 ) ) x = 0.4 ∧ 0.6 1 − 4 + ( 0.4 ∧ 1 ) ∨ ( 1 ∧ 0.6 ) ( 1 − 3 )  或  ( 2 − 4 ) + ( 0.4 ∧ 0.5 ) ∨ ( 1 ∧ 1 ) ∨ ( 0.7 ∧ 0.6 ) ( 1 − 2 )  或  ( 2 − 3 )  或  ( 3 − 4 ) + ( 1 ∧ 0.5 ) ∨ ( 0.7 ∧ 1 ) ( 2 − 2 )  或  ( 3 − 3 ) + 0.7 ∧ 0.5 3 − 2 = 0.4 − 3 + 0.6 − 2 + 1 − 1 + 0.7 0 + 0.5 1 \begin{aligned} \underline{2} - \underline{3}&=\sum_{x} \frac{\bigvee_{x_1 - x_2=x} \left(\underline{2}\left(x_{1}\right) \wedge \underline{3}\left(x_{2}\right)\right)}{x} \\ &= \frac{0.4 \wedge 0.6}{1-4}+\frac{(0.4 \wedge 1) \vee(1 \wedge 0.6)}{(1-3) \text { 或 }(2-4)}+\frac{(0.4 \wedge 0.5) \vee(1 \wedge 1) \vee(0.7 \wedge 0.6)}{(1-2) \text { 或 }(2-3) \text { 或 }(3-4)}+\frac{(1 \wedge 0.5) \vee(0.7 \wedge 1)}{(2-2) \text { 或 }(3-3)}+\frac{0.7 \wedge 0.5}{3-2} \\ & = \frac{0.4}{-3}+\frac{0.6}{-2}+\frac{1}{-1}+\frac{0.7}{0}+\frac{0.5}{1} \end{aligned} 23=xxx1x2=x(2(x1)3(x2))=140.40.6+(13)  (24)(0.41)(10.6)+(12)  (23)  (34)(0.40.5)(11)(0.70.6)+(22)  (33)(10.5)(0.71)+320.70.5=30.4+20.6+11+00.7+10.5

上述步骤的第二步是理解模糊数运算的关键。从上面的过程不难看出,这里采用的模式正是上面标黑的内容。这里先是将所有运算出现的相同的结果分别写在不同的分母上,再根据不同的组合算出其对应的隶属度,分别最小再最终取大后,得到最终的运算结果。

类似的还可以计算加法和乘法,其结果如下,可用于检验自己的理解是否正确:
2 ‾ + 3 ‾ = 0.4 3 + 0.5 4 + 1 5 + 0.7 6 + 0.6 7 2 ‾ × 3 ‾ = 0.4 2 + 0.4 3 + 0.5 4 + 1 6 + 0.6 8 + 0.7 9 + 0.6 12 \begin{aligned} \underline{2}+\underline{3}&=\frac{0.4}{3}+\frac{0.5}{4}+\frac{1}{5}+\frac{0.7}{6}+\frac{0.6}{7} \\ \underline{2} \times \underline{3}&=\frac{0.4}{2}+\frac{0.4}{3}+\frac{0.5}{4}+\frac{1}{6}+\frac{0.6}{8}+\frac{0.7}{9}+\frac{0.6}{12} \end{aligned} 2+32×3=30.4+40.5+51+60.7+70.6=20.4+30.4+40.5+61+80.6+90.7+120.6
此外,更为复杂的运算是在隶属度函数为连续实函数的情况。这里不多作介绍,相关内容可参考相关教材或课程。

  • 4
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
在Oracle第章的课堂笔记中,我们学习了集合运算的概念和用法。集合运算是一种对据库中的据进行操作和查询的技术,它可以将多个查询的结果进行合并、交叉和排除等操作。 首先,我们学习了并集运算(UNION)。并集运算可以将两个或多个查询的结果合并为一个结果集,它会去除重复的行,并按照查询语句的顺序进行排序。我们需要注意的是,并集运算中要求两个查询的列和类型必须匹配。 接着,我们学习了交集运算(INTERSECT)。交集运算可以将两个查询的结果中的共同部分提取出来,生成一个新的结果集。交集运算同样要求两个查询的列和类型必须匹配,而且结果集中不会出现重复的行。 然后,我们学习了差集运算(MINUS)。差集运算可以从一个查询的结果中排除另一个查询的结果,生成一个新的结果集。差集运算同样要求两个查询的列和类型必须匹配,并且结果集中不会出现重复的行。 最后,我们练习了使用这些集合运算符来解决实际问题。通过编写SQL查询语句,我们可以根据给定的条件和要求,使用并集、交集和差集等运算符来获取我们需要的结果。 总之,Oracle第章的集合运算课堂笔记和练习让我们了解了集合运算的概念和用法,以及如何使用这些运算符来操作和查询据库中的据。这些知识对我们在实际应用中更高效地处理和分析据具有重要意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半个冯博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值