使用scipy实现简单神经网络

1、准备工作

(1) 导入必要的库:

  • numpy - 用于基本的数据操作
  • scipy.optimize 中导入 minimize函数,用于训练模型
  • matplotlib 用于数据可视化
import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt

(2) 数据准备

首先需要设置的参数:

  • N– 样本个数
  • d– 输入样本的维度
  • num_hidden --隐函层的个数
N,d,num_hidden = 100,1,20

接着生成数据:

  • x– 区间 [ − 10 , 10 ] [-10,10] [10,10] 上取 N 个点,这里我们的 N=100。另外将其设为列向量,即x.shape=(N,1)
  • y_true– Mexican Hat 函数
    y = sin ⁡ x x y=\frac{\sin x}{x} y=xsinx
  • y– Mexican Hat函数的样本点,这里我们使用了 [ − 0.05 , 0.05 ] [-0.05,0.05] [0.05,0.05] 上的噪声

数据生成完成后出图看一下样子:


x = np.linspace(-10,10,N).reshape(-1,1)
y_true = np.sin(x)/x
y = np.sin(x)/x + (np.random.rand(N,1)*0.1-0.05)

plt.plot(x,y,'-b')
plt.plot(x,y,'oy')
plt.show()

在这里插入图片描述

2、实现主要的函数

(1) Logistic function

这里我们采用 Logistic function 作为激活函数,定义为:
y = 1 1 + e − x y = \frac{1}{1+\mathrm{e}^{-x}} y=1+ex1

(2) Forward函数

这里我们采用简单的三层神经网络,因此前馈函数的公式为:

Y ^ = ( w ℓ × 1 ( 2 ) ) T f ( ( w ℓ × d ( 1 ) ) T x d × N ( 2 ) + b ( 1 ) ) + b ( 2 ) \hat{Y}=\left(\boldsymbol{w}_{\ell \times 1}^{(2)}\right)^{T} f\left(\left(\boldsymbol{w}_{\ell \times d}^{(1)}\right)^{T} \boldsymbol{x}_{d \times N}^{(2)}+\boldsymbol{b}^{(1)}\right)+b^{(2)} Y^=(w×1(2))Tf((w×d(1))Txd×N(2)+b(1))+b(2)

这里需要特别说明一下,由于scipy.optimize只能优化第一个 positional argument,因此不能将每层的参数分开传给loss。这里我们为了方便,就在把所有参数放在一个向量 θ \boldsymbol{\theta} θ 中,并且在forward函数中拆取各层参数。

(3) 损失函数

这里直接采用 MSE作为损失函数:

M S E = 1 N ∥ Y − Y ^ ∥ 2 MSE = \frac{1}{N} \|Y-\hat{Y}\|^2 MSE=N1YY^2

(4) mse_loss

这个函数有那么一点多余,不过在后面计算loss时会比较方便。

def logi_func(x):
    return 1/(1+np.exp(-x))

def forward(x,theta,d,num_hidden):
    w1 = theta[:d*num_hidden].reshape(d,num_hidden)
    w2 = theta[d*num_hidden:d*num_hidden+num_hidden].reshape(num_hidden,1)
    b1 = theta[d*num_hidden+num_hidden:-1].reshape(num_hidden,1)
    b2 = theta[-1]


    return logi_func(x.dot(w1)+b1.T).dot(w2)+b2

def nn_loss(theta,x,y,d,num_hidden):
    return ((forward(x,theta,d,num_hidden)-y)**2).mean()

def mse_loss(y,y_pred):
    return ((y-y_pred)**2).mean()

写完之后简单测试一下,没有什么问题:

theta = np.random.rand(d*num_hidden+num_hidden + num_hidden+1)

forward(x, theta, d, num_hidden)
print(nn_loss(theta,x,y,d,num_hidden))

32.92328775623846

3、训练模型

minimize函数的使用非常简单,第一个参数为loss函数名,第二个参数为网络参数的初始值,第三个参数argsloss中第一个参数之外的所有参数组成的tuple

minize这个函数默认的优化方法为BFGS,这个算法具有很好的收敛性,不过直接用于神经网络的训练时速度稍慢一点。

本次实验在 MacBook Pro (m1) 上进行,运行时间3.7s,可见比梯度下降要慢很多(通常应该比简单梯度精度要多,但在loss上体现并不见得明显)。

res = minimize(nn_loss, theta, args=(x, y, d, num_hidden))

返回值res是优化结果的集合,其中参数的最优值在 res.x中,因此将该参数传给forward即可算出拟合值。

y_pred = forward(x,res.x,d,num_hidden)

4、模型评估

MSE值为 0.00055,可见训练效果还是不错的:

print(mse_loss(y,y_pred))
0.000552170732918358

5、训练结果可视化

这里直接使用matploblib即可,用三种线型分别表示:函数真实值、样本值、模型拟合值。

可以看到拟合效果是很不错的。

plt.plot(x,y,'oy')
plt.plot(x, y_true, '-r')
plt.plot(x,y_pred,'-b')

plt.legend(['y_samples', 'y_true', 'y_pred'])
plt.show()

在这里插入图片描述

为了进一步验证模型的泛化性能,我们在 [ − 5 , 5 ] [-5,5] [5,5] 随机采100个点,再看一下模型的预测效果。

可以看到在中间这一段的 MSE 仅有0.00033,可见这种单层神经网络在函数拟合问题上的泛化性能还是很不错的(注意到这里我们只用了20个隐含层节点)。

x_test = np.sort(np.random.rand(100,1)*10-5,axis=0)
y_test_true = np.sin(x_test)/x_test
y_test_pred = forward(x_test, res.x, d, num_hidden)

plt.plot(x_test, y_test_true, 'oy')
plt.plot(x_test, y_test_pred, '-b')

plt.legend(['y_test_true', 'y_test_pred'])
plt.title('mse={0}'.format(mse_loss(y_test_true,y_test_pred)))
plt.show()

在这里插入图片描述

6、小结

  • scipy.optimize.minimize 完全可以实现简单的神经网络
  • 本文构造的网络仅有20个隐含层,但拟合效果和泛化性能均较好,可见单隐含层神经网络在函数拟合上具有较好的性能
  • 实现细节的关键在于灵活调用miminize函数,尤其是对loss的传参
  • 本文在实现forward时对参数的重构方式有点麻烦,其实还可以更为简便,读者可自行思考完成
  • 本文使用的算法效率并不高,可见针对具体的训练问题仍需重视算法的选择
  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半个冯博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值