Python主要智能优化算法库汇总

最近几年简单浏览和对比了一些智能算法的库。现将各种库的主要信息、相关优缺点简单整理如下,各位同学可根据自己的需求和喜好进行选择。

1、DEAP

项目地址:https://github.com/DEAP/deap

安装

pip install deap

优点

  • 起点高,发表在Journal of Machine Learning Research
  • 用法灵活,所有模块均可自定义

缺点

  • 上手麻烦比较麻烦

比如它是这样设置参数然后完成一个简单的函数最大优化的:

import random
from deap import creator, base, tools, algorithms

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)

toolbox = base.Toolbox()

toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)

NGEN=40
for gen in range(NGEN):
    offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
    fits = toolbox.map(toolbox.evaluate, offspring)
    for fit, ind in zip(fits, offspring):
        ind.fitness.values = fit
    population = toolbox.select(offspring, k=len(population))
top10 = tools.selBest(population, k=10)
  • 速度慢(许多人都反应有这个问题)

  • 集成的算法少(当然也可以通过自定义来修改,但这样和完全自写没多大区别)

  • 超过半年没有更新(最近更新也只是安装上的修改)

2、mealpy

项目地址:https://github.com/thieunguyen5991/mealpy

安装

pip install mealpy

优点

  • 算法丰富,集成了现有的62种算法,目测应该还在继续更新添加
  • 上手容易,代码简单,比如对标准函数库的函数进行优化:
    from opfunu.type_based.uni_modal import Functions
    from mealpy.evolutionary_based.GA import BaseGA
    
    t1 = Functions()
    
    ## Setting parameters
    objective_func = t1._sum_squres__
    problem_size = 30
    domain_range = [-15, 15]
    log = True
    epoch = 100
    pop_size = 50
    pc = 0.95
    pm = 0.025
    
    md = BaseGA(objective_func, problem_size, domain_range, log, epoch, pop_size, pc, pm)
    best_position, best_fit, list_loss = md._train__()
    print(best_fit)

缺点

  • 整体设计似乎不太规范,文档解释不够
  • 语言上似乎还存在一点小问题,英语应用不够规范(这可能也是作者没有发表很好的杂志的原因之一)
  • 集成了多种算法但未列举参考文献,不方便论文引用
3、scikit-opt (国产良心)

项目地址:https://github.com/guofei9987/scikit-opt

官文文档地址:https://scikit-opt.github.io/scikit-opt/#/zh/README

安装

pip install scikit-opt

优点

  • 上手容易,代码简单,尤其许多用法很像Matlab。比如官方文档就提供了一些例子:使用遗传算法进行曲线拟合

  • 中文文档,并且文档很全。大佬的CSDN主页。(作者自称是京东算法工程师,这个库也的确感觉得到一些情怀,方便实用的感觉)

  • 在使用方便的基础上,也提供了不少接口用于自行修改。尤其可以自定义算子

  • 一些较好玩的特性:GPU加速、断点运行等。

缺点

  • 目前似乎还没有集成足够多的方法。大类有3类,共7种算法。

  • 算法本身的优化似乎还不足(未仔细测试)

4、Geatpy2(国产用心)

项目地址:https://github.com/geatpy-dev/geatpy

官网地址:http://geatpy.com/

安装:

pip install geatpy	

或者强制版本

pip install geatpy==2.5.1

优点

  • 上手容易,实现简单
  • 文档完整,示例丰富(中文文档)
  • 功能齐全,除算法以外也封装了许多实用的功能,比如数据可视化等

缺点

  • 代码风格诡异,比如
  • 英文用语不规范,变量命名相对随意,比如入门文档中,将目标函数翻译成"aimFunc",变量名称XM?等。
def aimFunc(self, pop): # 目标函数
        Vars = pop.Phen # 得到决策变量矩阵
        XM = Vars[:,(self.M-1):]
        g = 100 * (self.Dim - self.M + 1 + np.sum(((XM - 0.5)**2 - np.cos(20 * np.pi * (XM - 0.5))), 1, keepdims = True))
        ones_metrix = np.ones((Vars.shape[0], 1))
        f = 0.5 * np.fliplr(np.cumprod(np.hstack([ones_metrix, Vars[:,:self.M-1]]), 1)) * np.hstack([ones_metrix, 1 - Vars[:, range(self.M - 2, -1, -1)]]) * np.tile(1 + g, (1, self.M))
        pop.ObjV = f # 把求得的目标函数值赋值给种群pop的ObjV
  • 文档开展还显得比较稚嫩,比如主页文档就用插件显示,官网体验还欠些火候

:这个项目得多补充几句,目测应该是硕士生写的。总体的设计、DEMO、文档上给人感觉都远不如上面几个老练(尤其和DEAP相比)。但几个学生跨校合作,在不长的时间内能够完成如此完整的一个工作也实非易事。也希望他们能够继续进步。综合来看,这个项目个人认为属于国产良心

5、pygmo2

项目地址:https://github.com/esa/pygmo2

安装

 pip install pygmo

:安装还依赖如下环境

其它可能会用到的环境:

优点

  • 功能丰富
  • 支持并行和分布式计算(本身运行效率也很高)
  • 用法灵活
  • 感觉测试相对稳定(未仔细测试)

缺点

  • 上手相对麻烦
  • 依赖项较多,尤其要求对应C++版的软件环境
  • 算法有限

注:这个库也吐槽一句,网传很厉害,但真没看出来除了看起来专业以外有何厉害之处。当然通常以C++为底层的东西有可能在大量级问题上的处理更加容易部署,但一般的用户也用不到。

6、pyswarms

项目地址:https://github.com/ljvmiranda921/pyswarms

安装

pip install pyswarms

优点

  • 简单,易上手,基本上也属于几行代码入门型
  • 可视化,尤其动态可视化做得好。(亮点),比如画出图形,基本上就是一句代码:
plot_contour(pos_history=optimizer.pos_history, mesher=m, designer=d, mark=(0,0))

在这里插入图片描述

pos_history_3d = m.compute_history_3d(optimizer.pos_history) # preprocessing
animation3d = plot_surface(pos_history=pos_history_3d,
                           mesher=m, designer=d,
                           mark=(0,0,0)) 

在这里插入图片描述

缺点

  • 算法少。只有基于PSO的各类问题的算法(本质上其实就只是一个算法)
  • 灵活度不够。
  • 起点低。发表的论文既没进入CCF推荐,也没进入SCI。同时虽然号称有许多研究论文用过,但仔细看级别都不高(基本都属于三无型)
7、SciPy(想不到吧)

项目地址:https://github.com/scipy/scipy

官网:https://www.scipy.org/

官方文档: https://docs.scipy.org/doc/

安装(当然其实当你装上Python的时候它就在了):

pip install scipy

特别说明: scipy作为一个相对严谨和‘传统’的数值计算库,基本上常用的数值计算方法都有涉及。当然数值计算型的库通常都不会把智能优化(启发式算法)作为重点。它集成了十分有限的几种优化算法:差分进化、模拟退火等。但它仍然有不少优点:

优点:

  • 作为严谨的数值计算库,它的正确性和稳定性值得信赖(超过800个contributor,其中有不少是名校的教师、博士等)
  • 使用方便、简单
  • scipy也可以自定义优化算法

缺点:

  • 自然就是算法太少了
  • 虽然可以自定义,但麻烦程度几乎相当于完全自己造轮子
小结

经过一番调研,发现在Python的包库里面有质量的智能算法库还真是非常有限(除上述库以外,还有不少几个算法就成一个库的库,实在不敢恭维,简单玩玩就行了)。这里个人认为可能有以下几个方面:

  • 智能算法本身实现并不太难
  • 在当前的大环境下,大规模的问题下智能算法并不具有明显的优势
  • 专业做算法的通常仍然还是以Matlab为主(尤其数学类的)
  • 智能算法,尤其进化算法,本质上差异并不大

或许就是以上原因导致现在我们看不到特别惊艳的库,目前稍做得好一些的也就是在辅助功能上集成得较好而已。

当然,不管怎样,目前有这些库的话,对于不是完全专业从事相关算法研究的人员而言也完全够用了。就个人目前体验而言,综合来看最推荐的库为scikit-opt。当然终归到底,自己用着好就是最好。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半个冯博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值