模糊数学笔记:三、模糊隶属度函数的确定及常用隶属度函数

模糊数学 专栏收录该内容
12 篇文章 6 订阅
1、模糊隶属度函数的确定方法
  • 直觉法: 人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函数。这种方法通常用于描述人们熟知、有共识的客观模糊现象,或者用于难于采集数据的情形。

  • 二元对比排序法:二元对比排序方法就是通过对多个对象进行两两对比来确定某种特征下的顺序,由此来决定这些对象对该特征的隶属程度。这种方法更适用于根据事物的抽象性质由专家来确定隶属函数的情形,可以通过多名专家或者一个委员会,甚至- -次民意测验来实施。

  • 模糊统计实验法:类似于统计学中的大样本实验法,根据概念所占比例确定其对应隶属度。

除此之外还有许多其它方法,如最小模糊度法等。

2、常用模糊隶属度函数之基本类型

偏小、偏大和中间型是最为常用的隶属度函数的分类,最为简单常用的即是(半)梯形函数:

偏小型中间型偏大型
A ( x ) = { 1 , x < a b − x b − a , a ≤ x ≤ b 0 , b < x A(x)=\left\{\begin{matrix}1, & x<a \\\frac{b-x}{b-a}, & a \leq x \leq b \\0, & b<x\end{matrix}\right. A(x)=1,babx,0,x<aaxbb<x A ( x ) = { x − a b − a , a ≤ x < b 1 , b ≤ x < c d − x d − c , c ≤ x ≤ d 0 , x < a  or  d < x A(x)=\left\{\begin{matrix}\frac{x-a}{b-a}, & a \leq x<b \\1, & b \leq x<c \\\frac{d-x}{d-c}, & c \leq x \leq d \\0, & x<a \text { or } d<x\end{matrix}\right. A(x)=baxa,1,dcdx,0,ax<bbx<ccxdx<a or d<x A ( x ) = { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , b < x A(x)=\left\{\begin{matrix}0, & x<a \\\frac{x-a}{b-a}, & a \leq x \leq b \\1, & b<x\end{matrix}\right. A(x)=0,baxa,1,x<aaxbb<x

依次对应下列图形:

在这里插入图片描述

3、抛物型或半抛物型
偏小型中间型偏大型
A ( x ) = { 1 , x < a ( b − x b − a ) k , a ≤ x ≤ b 0 , b < x A(x)=\left\{\begin{matrix}1, & x<a \\\left(\frac{b-x}{b-a}\right)^k, & a \leq x \leq b \\0, & b<x\end{matrix}\right. A(x)=1,(babx)k,0,x<aaxbb<x A ( x ) = { ( x − a b − a ) k , a ≤ x < b 1 , b ≤ x < c ( d − x d − c ) k , c ≤ x ≤ d 0 , x < a 或 d < x A(x)=\left\{\begin{matrix}\left(\frac{x-a}{b-a}\right)^k, & a \leq x<b \\1, & b \leq x<c \\ \left(\frac{d-x}{d-c}\right)^k, & c \leq x \leq d \\0, & x<a \text {或} d<x\end{matrix}\right. A(x)=(baxa)k,1,(dcdx)k,0,ax<bbx<ccxdx<ad<x A ( x ) = { 0 , x < a ( x − a b − a ) k , a ≤ x ≤ b 1 , b < x A(x)=\left\{\begin{matrix}0, & x<a \\ \left(\frac{x-a}{b-a}\right)^k, & a \leq x \leq b \\1, & b<x\end{matrix}\right. A(x)=0,(baxa)k,1,x<aaxbb<x

依次对应下列图形:
在这里插入图片描述

其它隶属度函数可参考:

Membership functions

  • 2
    点赞
  • 4
    评论
  • 35
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

<p> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;"> </span> </p> <p> <span style="color:#E53333;">购买课程后,添加小助手微信(微信号csdnxy68)回复【唐宇迪】</span> </p> <p> 进入学习群,获取唐宇迪老师答疑 </p> <p> <br /> </p> <p> <br /> </p> <p> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">Python金融分析与量化交易实战课程旨在帮助同学们快速掌握Python数据分心核心技能与交易交易系统策略部署与回测分析。全部课程内容皆以实战为主,通俗讲解数据分析常用方法与经典解决方案。主要包括大核心模块1.Python数据科学必备工具包实战;2.金融数据分析处理与分析实例;3.量化交易平台策略分析实战。整体风格通俗易懂,零基础即可入门,适合准备转行就业与进阶提升同学们。</span> </p> <br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">课程特色</span><br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">1机器学习算法全面覆盖,每个算法均有配套项目实战!</span><br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">2通俗易懂,用最接地气方式讲解复杂算法与代码!</span><br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">3五年沉底,精选配套案例,打造最适合初学者实战路线图!</span><br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">4机器学习教材免费领取,课程持续更新,永久有效!</span>
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值