技术杂谈
文章平均质量分 55
以各类技术的笔记为主。
半个冯博士
这个作者很懒,什么都没留下…
展开
-
Python函数作为参数传递给函数
Python中一切皆对象(object).–Dive Into Python既然一切皆对象,那么一切都可以作为参数传递!1、定义两个简单的函数函数1–add_params(a,b):a,b两个数字返回:a+b函数2–mult_params(func,a,b,c):a,b,c 为数字,func是函数返回:func(a,b)*cdef add_params(a,b): return a+bdef mult_params(func,a,b,c): return func原创 2021-08-15 20:28:48 · 3730 阅读 · 0 评论 -
Python计算本周是第几周
原理: 利用 datetime 的减法,获取两个日期(精确到日)之间的天数,再除以7即可:from datetime import datetime# 起始日期,可自行修改st_date = datetime(2020,1,1)today = datetime.today()d_days = today - st_dateprint(d_days.days//7)注意事项:如果起始日期不是第一周的周一,则要将起始日期设为该周的第周一的日期两个日期相减的本质是时间戳的减法,其结果原创 2021-05-02 23:42:22 · 3101 阅读 · 0 评论 -
autograd库测试笔记-(一个基于Numpy的自动求导库)
导入 autograd 库,同时导入这个库里的numpy(应该是作者自己把numpy放入了这个库的命名空间里面)以及逐项求导elementwise_grad。from autograd import gradimport autograd.numpy as npfrom autograd import elementwise_grad接下来定义第一个函数,这个函数非常简单,其实就是一个线性变换:yn×l=Xn×dwd×l \mathbf{y}_{n\times l} = \mathbf{X原创 2021-04-11 22:09:19 · 1714 阅读 · 1 评论 -
用Python实现Gauss-Jordan求逆矩阵
Python Gauss-Jordan求逆源码import numpy as npn = 5a = np.random.rand(n,n)*10-5 + np.eye(n)*10I = np.eye(n)A = a.copy()for i in range(n): if A[i][i] == 0.0: sys.exit('Divide by zero detected!') for j in range(n): if i != j: rat原创 2021-03-06 22:21:46 · 1534 阅读 · 0 评论 -
Markdown与 $\LaTeX$ 公式的使用入门指南
文章目录一、Markdown是什么?二、Markdown编辑工具三、Markdown基本语法简介1、文档结构相关2、表格3、图片4、插入代码5、添加脚注6、文档目录7、与`html`的兼容8、其它四、在Markdown中使用数学公式1、基本用法2、高级用法3、全世界最好用的在线免费 LaTeX\LaTeXLATEX 辅助工具五、Markdown与其它类型文件的转换写在最后一、Markdown是什么?Markdown是一种轻量级标记语言,创始人为约翰·格鲁伯(英语:John Gruber)。 它允许人们原创 2020-10-02 16:13:31 · 2357 阅读 · 0 评论 -
LaTeX配置及实用工具汇总
文章目录1. 教程2、主要工具和环境3、实用工具5、Jupyter Lab和LaTeX1. 教程教程我没管那么多,在网上随便找几个入门的贴子看看,会改一些模板,基本上就可以用了。初学的时候其实主要是关注以下几个内容:(1)如何使用label(主要是为了自动添加公式、图片、表格甚至于章节的编号)(2)如何添加宏包,这个一般主要是在想用一些特定的功能的时候再去查就是。常用的宏包模板里面都有(3)参考文献的管理和引用。这一点刚开始稍麻烦一点,LATEX的参考文献全部放在.bib文件中,添加引用过后再自动原创 2020-08-11 15:53:32 · 893 阅读 · 0 评论 -
Matlab和Python(Numpy,Scipy)与Lapack的关系
说到数值计算,可能许多人都能立马想到Matlab。Matlab多年的持续影响力已经让它成为许多人心中科学计算的代名词。但它底层一个重要的库Lapack却很少有人知道。而Python年龄比Matlab小得多,最近几年随着AI的流行它也开始火了起来。由于做机器学习本质上了也是在做计算,所以许多人也开始在想Python是不是也能做数值计算。当然,Python本身其实只是一个很“简单”的语言,它的数值计算模块实际上是由Numpy和Scipy两个库来实现。而其中最重要的模块之一–线性代数模块–就是直接调用Lapac原创 2020-08-04 15:03:31 · 3273 阅读 · 0 评论 -
Pandas缺失数据最快定位方式(极少代码快速实现,打死不用循环!!!!!)
文章目录先直接上代码简单分析先直接上代码考虑下表:df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three'])df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])df2 one two threea 0.820537 -0.115642 1原创 2020-07-28 23:29:59 · 451 阅读 · 0 评论 -
Pandas转pivot, groupby等结果为dataFrame--彻底解决多表头问题
Pandas转pivot, groupby等结果为dataFrame问题背景:在用Pandas进行数据分析和处理的时候,常会用到如goupby(),pivot()等方法,这些方法极大简化了我们的操作复杂度。但另一方面,这些操作之后返回的类型往往却并不是一个标准的DataFrame。具体的现象就是常会出现多出来的一级表头,而当我们想要再进行继续处理时,它的索引方式就发生变化了,不便于我们进一步操作。因此我们希望能够有一种方法将这些返回类型再次变为我们需要的DataFrame类型同时保持原有的表头。本文就这原创 2020-07-27 17:24:42 · 2509 阅读 · 0 评论 -
Python轻量级IDE推荐 -- Jupyter QTConosle
文章目录1、为何推荐Jupyter QTConsole2、简介和安装3、启动和界面简介4、菜单栏里的小功能5、一些特别实用的功能Python的IDE很多,之前也写过一个相对粗略的IDE推荐。这篇文章主要是更详细地介绍一下Jupyter QTConsole这个工具。1、为何推荐Jupyter QTConsole在实际的学习、开发过程中,我们常会遇到这些情况:看见一个新的工具,想去试试。用Pycharm打开太慢,用Notebook启动半天不说,还得重新创建文件啥的,感觉很麻烦很纠结。写程序的时原创 2020-07-26 15:19:32 · 5786 阅读 · 1 评论 -
Python主要智能优化算法库汇总
最近几年简单浏览和对比了一些智能算法的库。现将各种库的主要信息、相关优缺点简单整理如下,各位同学可根据自己的需求和喜好进行选择。文章目录1、DEAP2、mealpy3、scikit-opt (国产良心)4、Geat2(国产用心)5、pygmo26、pyswarms7、SciPy(想不到吧)小结1、DEAP项目地址:https://github.com/DEAP/deap安装:pip install deap优点:起点高,发表在Journal of Machine Learning Rese原创 2020-07-25 01:15:38 · 20008 阅读 · 10 评论 -
Python之并行--基于joblib
Python之并行–基于joblibPython的并行远不如Matlab好用。比如Matlab里面并行就直接把for改成parfor就行(当然还要注意迭代时下标的格式),而Python查 一查并行,各种乱七八糟的方法一大堆,而且最不爽的一点就是只能对函数进行并行。当然,这点困难也肯定不能就难倒我们,该克服也得克服,毕竟从本质上讲,也就只是实现的方式换一换而已。大名鼎鼎的sklearn里面集成了很方便的并行计算,这在之前的机器学习教程里面也有12仔细查看其代码发现就是用joblib实现的,并且用法还挺原创 2020-07-23 19:21:21 · 5278 阅读 · 0 评论 -
Markdown转LaTeX的Python程序大全(持续更新)
文章目录1.双`$$`符号转`\begin`-`\end`型公式2.将`\matrix{}`域替换为`\begin{matrix}...\end{matrix}`域3.删除LaTeX\LaTeXLATEX中不需要的Markdown关键词Markdown是做笔记的利器,虽然有Pandoc这样的工具,但直接转过去的格式通常是没法直接编译成功的。其中一个最大的问题就是公式的转换。比如在Markdown里面,写不写\begin{equation}这样的代码其实都不会自动编号,所以经常在做笔记的时候索性就不想写原创 2020-07-20 23:04:17 · 2420 阅读 · 0 评论 -
Python Numpy中返回下标操作函数-节约时间的利器
如果觉得Python慢,那么首先应该想到是不是没有用对。Numpy是Python中自带的一个数值计算库,包含了大量数值计算的常用方法。其底层大量使用C/C++(超过50%的代码量),矩阵计算调用LAPACK库(Fortran),同时在大量代码优化的层面做了工作,使得其内置方法速度奇快。Numpy的设计也颇具人性化, 有许多具有特色又好用的方法可供使用。其中以arg开头函数就是专门为返回下标(集)而设计的,总共有5个这样的函数,它们简单易用,在许多问题里可以将程序极度简化,从而提高我们的工作效率。1.原创 2020-07-19 18:08:26 · 11484 阅读 · 0 评论 -
PCA计算流程详解与实现(Python详细编码,全部测试正确,与sklearn完全一致,只有7行代码)
如果无法理解一种算法的原理,那么就整理出它的流程,再在直接的计算过程中慢慢体会它的思想。– 我说的。许多问题在一开始都很难理解其原理。像PCA这种经典的算法,其实从头至尾的每个步骤都非常严密,细节的知识特别多。但最近看到不少的书、网上的资料都是在通篇扯原理,讲道理,到最后就只列一个调包的程序,读完之后还是总觉得不清楚它到底是怎么玩的,这就没多大意思了。理解原理是进行深入研究的必要前提,但要做到这一点的确很难。但这个其实不是我们的问题,而是因为经典的方法通常是被许多优秀的科学家和工程师不断完善才有了今天原创 2020-07-18 02:00:37 · 2437 阅读 · 4 评论 -
Python入门IDE选择
Python的IDE目前市面上有很多,可以参考文末一些文章介绍的大全,都非常详细。但就多数从零开始的人而言,一个好用的IDE就非常重要了,有时候可能就是一开始的IDE没选好导致后期学习乏力,耽误不少事情。本文就几个最为常用的IDE作一个简要的介绍。一、Jupyter Qtconsole官网链接:https://qtconsole.readthedocs.io/en/stable/安装方法:pip install qtconsole注:推荐使用pip install. 并且在安装前请保证已装有P原创 2020-07-17 01:32:03 · 1491 阅读 · 0 评论 -
机器学习入门数学书籍推荐(部分资源有下载链接)
许多同学在入门机器学习时总喜欢从公式推导开始看,但又经常觉得很多地方看不懂。这自然就是数学基础不够导致的。虽然我们非常推荐以直接调包的方式入门学习,但这种方式也仅适合入门。其实无论是在机器学习、人工智能(现在广义中所指的含义),还是在许多较为传统的IT项目中,数学基础都是必不可少的。本文就简单总结机器学习中需要的数学知识以及对应的学习教材。原创 2020-07-15 18:18:35 · 970 阅读 · 0 评论 -
中国计算机学会(CCF)推荐国际学术会议和期刊目录(2019年版,官网转载)
目录计算机体系结构 / 并行与分布计算 / 存储系统期刊计算机体系结构 / 并行与分布计算 / 存储系统 会议计算机网络期刊计算机网络会议网络与信息安全期刊网络与信息安全会议软件工程 / 系统软件 / 程序设计语言期刊软件工程 / 系统软件 / 程序设计语言会议数据库 / 数据挖掘 / 内容检索期刊数据库/数据挖掘/内容检索会议计算机科学理论期刊计算机科学理论会议计算机图形学与多媒体期刊计算机图形学与多媒体会议人工智能期刊人工智能会议人机交互与普适计算刊物人机交互与普适计算会议交叉 / 综合 / 新兴期刊交转载 2020-07-15 19:28:32 · 25637 阅读 · 0 评论 -
中国计算机学会(CCF)推荐中文科技期刊目录(2020年发布,官网转载)
A 类序号期刊名称主办单位网址1软件学报中国科学院软件研究所中国计算机学会http://www.jos.org.cn2计算机学报中国计算机学会中国科学院计算技术研究所http://cjc.ict.ac.cn3中国科学:信息科学中国科学院国家自然科学基金委员会http://infocn.scichina.com4计算机研究与发展中国科学院计算技术研究所中国计算机学会http://crad.ict.ac.cn5计算机辅助设计与图形学学转载 2020-07-15 19:31:55 · 13643 阅读 · 0 评论