rag检索策略优化

学习内容:

  1. 优化1:切片策略

一、动态切片技术:

二、辅助信息检索

(1)文本->标题

三、整体提取:Graph RAG:

2.优化策略2:Query提取

解决问题:1.检索数据过少

2.问题向量空间和内容向量空间不匹配

(2)HyDE方法认为原始问题一般比较短,生成的假设文档可能会更好地与索引文档对齐

3.优化策略3:检索策略优化

解决问题:1.检索得分计算不准

  1. 检索流程优化,多策略机制

一、提高检索准确性

Hierarchical indices假设:通过层次化的索引结构可以平衡检索的精确度和上下文越小的块检索的越准确,越大的块检索的越不准,先把数据切成更小的块,然后进行summary,让它变得更小,大块检索准再从大块的内容中进行小块的检索,这样的话我们筛选的信息就更精准了

  • 检索流程优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值