动态有效连接

亚稳态(在计算神经科学领域,亚稳态理论指的是人类大脑的几个功能部分结合在一起,以合作和协调的方式产生神经振荡的能力,为意识活动提供了基础。亚稳态是指信号(如振荡波)脱离自然平衡状态,但持续较长时间的状态。该原理描述了大脑从看似随机的环境线索中理解事物的能力。在过去的25年里,由于计算机模拟大脑活动的方法的进步,研究者们对亚稳态和非线性动力学的基本框架产生了浓厚的兴趣)是大脑动力学的关键来源:即神经元活动的自发时空重组。

大脑动力学已经成为许多动态功能连接(DFC)分析的焦点。DFC利用静息态fMRI来描述分布式功能模式随时间的形成和分解。然而,除了技术和实践上的争议,这些方法不能阐释(例如,亚稳态)动力学的神经元机制——由于它们的描述性、无模型的性质。本文的作者认为,有效连通性(EC)分析更适合于研究亚稳态的神经元基础。为此,本文的作者呼吁以生物为基础的模型(即动态因果模型,DCM)和动力系统理论(即异宿序列动力学)来创建一个概率的、可生成的血液动力学波动模型。该模型在EC模式(即连接状态)的参数空间中生成轨迹,以表征功能性大脑结构。

简而言之,它扩展了现有的频谱DCM,以生成随时间变化的功能性连通性数据特征。本文试图通过模拟非平稳的fMRI时间序列并使用变分贝叶斯方法来估计关键模型参数(即连接状态之间的转移概率和这些状态的参数性质)以确定模型的有效性。这些数据进一步使用贝叶斯模型比较(在受试者内部和受试者之间)。最后,文章考虑了参与该方案的应用和扩展的实际问题。重要的是,该方案是在一个通用的贝叶斯框架内运行的,该框架可用于研究任何非平稳时间序列中的亚稳态和血液动力学。本文发表在Neuroimage杂志。

1.介绍

大脑持续地表达协调活动时存在短暂模式,这些模式在对内部和外部扰动的反应中出现和消失。这种亚稳态协调动力学(在自组织复杂系统中,如大脑)的出现和演化在非线性动力学系统理论中得到了广泛的研究。此外,随着功能神经成像技术的进步,脑内活动的特征吸引了越来越多的关注。关于大脑中自发时空重组的机制、其神经元基础及其与认知和行为的关系,仍有很多需要了解的地方。特别是,亚稳态动力学与大脑中的功能整合和功能分离(专业化)的概念密切相关,以及二者如何相互关联。

分离的神经元群体在分布式网络上进行通信的趋势被称为功能整合。虽然神经解剖学(即结构连接性)为区域间的交互提供了基础设施,但在两个区域之间不一定需要直接的(单一的)突触,即解剖学联系来调节功能整合。因此,为了获得功能整合的总体概况,我们可以量化不同(可观察到的)区域响应之间的统计相关性,这通常被称为功能连通性(FC)。这种统计关系的例子包括相关性、相干性和转移熵。相反,在不同的环境中,估计距离较远的脑区之间的神经元动力学如何相互影响(即,原因)是有效连通性(EC)研究的主题。

在过去的几年里,功能神经成像领域关注于表征休息时(即无任务期间)功能连接模式的自发重组。在开发跟踪FC模式变化的方法和过程方面投入了大量的精力。这个领域被称为动态功能连接(DFC)。在已用于此目的的非侵入性功能神经成像模式中,功能磁共振成像(fMRI)仍然特别受欢迎,因为它具有高空间分辨率和固有的反问题规避(即源定位)。

自DFC出现以来,大脑连接学界一直在与许多理论和实践问题作斗争。这些包括正在进行的辩论:最可靠(敏感和稳健)的FC测量和技术、(非)平稳性的定义、变化的相关时间尺度、波动的认知相关性、人工(如运动相关)影响的程度、解释问题等等。然而,DFC更根本的限制是(用于研究功能整合和亚稳态)继承了FC的描述性性质。换句话说,测量到的脑信号之间的统计关系(或其变化)并不能揭示潜在的神经元动力学及其相互作用。在功能磁共振成像的例子中,神经动力学与可测量的血流动力学之间的神经血管耦合使问题进一步复杂化,使功能磁共振成像成为一种缓慢而间接的神经元活动测量方法。因此,尽管(D)FC结果作为分类和预测的潜在生物标记物很有用,但它们并不适合揭示大脑中的功能整合(以及内源性或自主动力)机制。

在神经元现象中,最接近DFC波动的方法是:

(1)建立与某些电生理和脑电图(EEG)记录的功率包络的相关性;

(2)理解大规模计算模型的涌现动力学的整体一致性。

目前的研究者们的基本共识是,功能连接的波动是与神经元活动相关的——而不仅仅是人为的(尽管存在生理和测量噪音)。但我们仍旧需要解决一个反问题,即:将这些(可观察的和)演化的时空模式映射回生成它们的(目前为止是不可观察的)的神经元网络的演化过程。就目前为止,只能通过构建观测数据的生成模型,并采用推理程序来估计时变的有效连通性实现这一目的。

根据定义,有效的连接是基于模型的。也就是说,它依赖于耦合神经系统的生成模型,可以解释经验观察到的数据。目标是识别对任何给定数据具有最大证据的模型(网络),并推断相应的(上下文敏感的)耦合或有效的连接参数。那么,有效的连通性分析如何有助于我们理解功能集成(特别是在静止状态下)及其假定的瞬态动力学呢?

在现有的EC方法中,研究者们关注最成熟的模型:动态因果模型(DCM)。更具体地说,是选择为无任务功能磁共振成像方法开发的频谱动态因果模型(spDCM)。频谱DCM是一种有效的生物基础模型,可以解释(即预测)内源性神经元波动产生的血氧合水平依赖(BOLD)信号的复杂交叉谱。基于神经元动力学状态空间方程的局部线性假设,与内源性波动和观测噪声的交叉谱的参数化幂律分布一起,谱DCM有效地将(非线性)状态空间模型转换为(线性)确定性模型,可以快速有效地将其反演。

到目前为止,频谱DCM已经被广泛应用于静态状态(rs)fMRI数据的整个过程,推断网络和耦合来解释会话平均交叉谱(即FC的傅里叶推广)。为了通过时间跟踪网络重构,一些研究将spDCM应用于连续的分段数据。例如,在癫痫研究中,spDCM(在生理学上更详细的形式)已被应用于连续的(侵入性和非侵入性)脑电图记录和电生理数据,以跟踪耦合参数随时间的演变。

最近,spDCM被用于估计rsfMRI数据连续周期耦合参数的波动。为此,作者在spDCM的生成模型中添加了一个线性概率模型,该模型允许参数变化(跨时代)被解释为一些(常量和振荡)回归量的加权平均值。这种增广参数经验贝叶斯(PEB)方案本质上是一种贝叶斯一般线性模型(GLM),其优点是考虑了EC参数的后验期望和不确定性;提供了对时间效应的贝叶斯处理。这项研究的关键发现是,当动态组件被明确建模时,特定主题的基线有效连接在不同session之间更加一致。然而,有趣的是,作者还指出,有效连通性的第一个(主题特定的)特征变量的时间波动也在整个过程中守恒。这说明了我们在本论文中通过分层贝叶斯模型所追求的可复制的连接动力学。

本文提出的生成模型是一个混合的(离散的和连续的)层次模型,调用非线性动力系统理论的结构来解释大脑中的亚稳态动力学。为此,我们将EC的结构或模式中的巡回与可再现的瞬态动力学(复杂自组织系统的特征)联系起来。在最小的假设下,这种连通性动态可以被转换为我们采用和实现的潜在变量或隐马尔可夫模型。有了这样一个生成模型,突出的问题是建立和验证一个有效的模型反演过程(即,从一组观测到底层模型参数和隐藏状态的映射)。值得重申的是,EC动力学的生成模型可以解释功能连接模式(DFC中所研究的那种)的时间演化。换句话说,在CSD的传统DCM提供了功能连通性的完整解释的意义上,当前方案解释了动态功能连通性。在接下来的内容中,我们描述了生成模型的基本原理,概述了伴随的(变分贝叶斯)推理过程,并建立了该方法的有效性(通过模拟和数值分析)。最后,我们讨论了这些分析的含义,以及一些潜在的应用。

2.方法和材料

2.1生成模型

本文基于血流动力学大脑状态的生成模型是基于宏观(慢)动态模式来估计有向(有效)连接参数空间中的一系列不稳定不动点的方法。换句话说,假设神经元动力学是由内在(区域内)和外在(区域间)连接模式随时间变化而产生的。具体来说,作者假设连接性模式在参数空间中描绘出一个异宿通道(即稳定的异宿环,缩写为SHC);访问离散数量的不稳定固定点,在不同的大脑活动状态或模式之间产生一种没有赢家的竞争。然后进一步假设从一个不稳定不动点到下一个不动点的转变是快速的,相对于连接在不动点附近的时间量。这一假设得到了SHC的两个特征的许可。这些问题包括:(i)超高速通路的结构稳定性的来源,以及(ii)在有中等噪音的情况下,在鞍点附近的通行时间较长。结构稳定性与任何SHC的离散近似,在离散数量的连接模式,而长时间通过一个模型,从一个连接状态到下一个离散过渡。(异宿环是解轨迹的集合,它通过鞍-汇来连接平衡,周期解或混沌不变集的序列。有关异宿环及其稳定性的更精确描述,请参见Melbourne等(1989),Krupa和Melbourne(1995),Field(1996)的专著以及Krupa(1997)的调查文章。这种行为在一般动力系统中是不寻常的。但是,它是具有对称性的动力学系统的一般特征。实际上,对称性的存在可以导致不变的子空间,在该子空间下可以建立一系列的鞍-槽连接,从而导致异宿环行为。随着时间的流逝,典型的轨迹会在快速移动到下一个解之前,在每个解(可能是平衡,环轨迹或混沌不变集)附近停留越来越长的时间。由于鞍-沉连接牢固,这些异宿环(称为异宿环)在保持系统对称性的扰动下也很牢固。鞍点(Saddle point)在微分方程中,沿着某一方向是稳定的,另一条方向是不稳定的奇点,叫做鞍点。在泛函中,既不是极大值点也不是极小值点的临界点,叫做鞍点。在矩阵中,一个数在所在行中是最大值,在所在列中是最小值,则被称为鞍点。

稳定异宿通道的这些特性为连通状态(即参数空间中的不稳定不动点)之间的转移提供了一种隐马尔可夫模型(HMM),其中每个连通状态都产生了快速的神经元波动,根据它们的交叉谱密度,这些神经元波动可以在各个分段内观察到。这遵循了Rabinovich的精神:他注意到“我们讨论过的基于SHC的可再现瞬态动力学包含两个不同的时间尺度,即鞍点附近的慢时间尺度和鞍点之间的转换的快时间尺度。”考虑到这一点,我们可以基于庞加莱映射而不是ODEs建立一个动态模型,这在计算上可以非常高效地建模一个复杂的系统。”

图1展示了本文所描述的生成模型。简而言之,该模型使用了与特定连接模式相关联的切换状态的隐马尔科夫模型。在每个大脑区域内的内源性神经元波动的驱动下,每个连接状态都会产生快速的神经元动态。更具体地说,可以根据如何生成数据来描述这个模型。首先,我们从由浓度参数b参数化的狄利克雷分布中取样状态转移矩阵。然后使用这个转换矩阵(B)来选择当前大脑的状态;假设有少量(n)的隐藏状态(s)。当前状态然后选择一个特定状态的连接模式(β),从一个多元高斯分布采样。然后将随机高斯变量添加到此模式中,以生成当前分段的连通性(θ)。这种连接性定义了神经元网络在局部线性假设下的传递函数(K)和交叉谱(Y(ω)),以及每个大脑区域的参数化、无标度、内生波动。然后用预测的或生成的交叉谱来生成样品交叉谱。

图1生成模型的组成因素(左)和相应的图形模型(右)

生成模型的技术方面是生成的复杂交叉谱的可能性的形式。有了理想的估计器,人们可以假设这些频谱数据特征具有Wishart分布,每个频率有一个自由度。然而,我们假设交叉谱构成估计的平均值,具有一致和渐近正态估计。在这种情况下,预测和观测频谱估计之间的差异的方差等于交叉频谱密度乘以(有效)自由度,我们将其视为一个未知参数。

2.3 具有可变消息传递的模型反演

与图1所示的图形模型相比,图2显示了相同的生成模型,但采用的是正常或Forney风格的因子图。因子图是一种有用的概要图,因为它清楚地显示了模型拟合或反演中隐含的消息传递体系结构。图1中的图形模型将节点与随机变量关联起来,将边与条件相关性关联起来。相反,图2中的因子图将节点与生成模型的因子或边际概率分布(用绿色方块中的数字表示)关联起来,而边则对应于随机变量。一旦(Forney风格)因子图的架构以这种方式被指定,我们就可以根据沿边缘(两个方向)传递的变分信息来设想模型反演。

图2 基于图1生成模型的变分消息传递(左)和规范样式因子图(右)

模型反演是将原因与可观察结果之间的概率映射的生成模型进行反演,从而将观察结果映射到(推断)原因;这里是生成模型的未知或隐藏参数。感兴趣的关键参数包括隐藏状态之间的概率转移矩阵(B)和与每个状态相关联的连通性模式(β)。然而,为了评估这些数量上的后验,我们还必须在所有其他参数(和超参数)上优化后验。例如,必须推断各种随机(高斯)波动的振幅,内源性神经元波动的(无标度)形式,以及估计交叉谱的自由度。

图2左边的方程总结了变分反演的原理。简而言之,我们在模型证据上构建一个变分自由能界限(在机器学习中也称为ELBO)。这个较低的证据界限是观测数据和一个近似的后验密度或贝叶斯“观点”的函数。这种情况下的数据是由一系列分段组成的fMRI时间序列的交叉谱估计。近似后验对应于所有未知参数和状态的平均场近似,用Q表示。然后,这个近似后验相对于自由能函数进行优化,从而最小化近似后验观点和真实后验之间的KL分歧(见图2中的等式)。同时,这种优化使自由能成为模型证据的一个下界。这是重要的,因为这意味着我们可以使用自由能泛函来比较不同的模型的证据或边际似然(例如,模型与不同数量的隐藏马尔科夫状态)。

图2还显示了近似观点的解使得相对于后验观点的变化(或相对于其充分统计量q的导数)为零。图1生成模型下的解决方案在白色面板中提供。这些是模型因子之间传递的有效信息,直到自由能收敛和最大化为止。这些消息(用圈起来的数字表示)显示在右边的因子图上,以说明该方案中隐含的双向和分层消息传递。对于熟悉fMRI数据分析的人来说,这个信息传递方案可以分为三个部分:下面的部分对应于每个分段内复杂交叉谱的传统动态因果模型(DCM)分析。DCM的参数估计构成了一个随分段变化的连通性层次模型的证据;使用参数经验贝叶斯(PEB)估计。最后,该模型的第三部分对应一个隐马尔可夫模型(HMM),为PEB方案提供了经验先验

总而言之,连接的变化受到先验观点的限制,即在少数大脑连接状态之间存在过渡,而PEB水平的连接估计为隐藏的马尔可夫模型提供了证据,证明大脑处于一种或另一种状态。这一证据在图中概括为L。有趣的是,在这种模型反演的公式下,人们可以将隐马尔可夫模型视为PEB(中间)水平的贝叶斯模型平均值,而PEB(中间)水平反过来又为每个DCM分段提供经验先验。关于当前连接的上行消息—在隐藏的马尔可夫模型中为连接状态提供证据—显示为绿色,而下行消息—构成贝叶斯模型连接平均值—显示为红色。

至关重要的是,自由能最小化所传递的变化信息,与许多已建立的方案有着形式上的相似之处,这一点并不令人意外;包括时间序列分析中的Baum-Walsh算法、期望最大化和非线性系统辨识。在接下来的内容中,我们试图通过生成合成数据来建立这个反演方案的有效性,并确保我们可以恢复底层的状态转换。这个验证的重点将是展示如何优化变分自由能也可以用于贝叶斯模型选择;在这里,估计隐藏状态的数量和结构化转换的性质。

2.3 建模潜在状态

我们正在处理的反演问题提出了许多挑战。这是因为我们试图推断未知数量的隐藏或潜在状态,这些状态之间的概率转换,以及到层次模型较低层次的连通性参数的可能性映射。此外,这种反演还考虑了基于数据的下层连通性参数的不确定性。这是一个困难的问题,有几个原因。

首先,当试图估计概率转变和潜在状态的可能性映射时,存在不确定性或简并性。这是因为这些映射的定义仅为未知的顺序或隐藏状态的标签。换句话说,排列状态将改变转换和可能性参数,而不改变生成的数据。我们将在下面看到,这种简并可以通过对隐藏态的系统重新标记来巧妙处理。

然而,我们仍然留下了后参数空间的几何信息。换句话说,因为概率转移矩阵的参数数(即狄利克雷浓度参数)可能很大,所以这个空间的自由能泛函不是凸的。这意味着梯度上升-在变分自由能的优化中固有的-将遇到许多局部极大值。这个问题的通常解决方案是考虑重新参数化生成模型,以确保自由能泛函表现良好。

解决局部极大值问题的另一种方法是在不同的起始点初始化变分反演。通常,由于高维问题,这在计算上是难以处理的。然而,我们可以利用贝叶斯模型提供的计算效率,对所有似是而非的初始化进行穷举搜索。这要求我们根据关于概率转变的先验信念定义一个似是而非的初始化。正如引言中所指出的,隐马尔可夫模型的使用是由通道的概念激发的,通过连接参数空间访问一系列不稳定的不动点。这个假设立即告诉我们,概率转移矩阵必须具有某些属性。这些可以总结如下:

首先,任何不稳定不动点的停留时间都必须很小。换句话说,在选择分段长度的时间尺度上,保持特定连接潜在状态的概率是很小的。我们将把这称为先验停留

二是潜态之间的轨迹有一个系统的结构;这样,从一个不稳定的不动点到下一个不动点的转变是相对可预测的。我们称之为先验轨迹。

最后,如果必须有一定数量的隐藏状态来解释数据,那么它们必须在观测数据的时间中占据一定比例的时间。我们将其称为均衡或均匀分布先验。

根据相应的先验能量,将这三个先验信念正式化是相对简单的,如下所示,其中一个·表示一个内积或点积:

第一项(先验停留)只是概率转移矩阵轨迹的对数。这意味着,如果停留在任何状态的概率很低,跟踪或平均概率也会很低,从而导致较小的先验概率。第二项是过渡的平均条件熵,这样从一个状态到另一个状态的确定性过渡导致最小的条件熵(为零)。最后一项是平衡分布上的熵(从密度动力学的主要特征向量得到;即概率转移减去单位矩阵)。如果所有的n个状态在一段时间内以相等的概率被占据,那么这个熵(即平衡势)就会达到它的最小值为零。

有了这个正式的先验在概率转移矩阵之上,我们现在可以对所有可信的概率转移矩阵进行穷举搜索——通过使用先验分布的样本来初始化梯度上升。此外,还可以将先验对数输入到梯度上升中;从而破坏了大量的局部极大值。图3显示了似是而非的概率转移矩阵的一个例子-和一些典型的轨迹。

图3:先验似是而非的概率转移矩阵之间的区别

图3:这个图说明了先验似是而非的概率转移矩阵之间的区别,其中概率转移矩阵的先验概率或势在上面用三个势项(停留、轨迹和平衡概率)定义。在这个例子中,我们创建了几千个概率转移矩阵,方法是在四个隐藏或潜在状态下,为转移矩阵的每一列随机分配四个狄利克雷参数。然后根据这些矩阵之前的潜能给它们打分。然后在先验势的三个项的基础上确定唯一的转移矩阵。所得到的先验势分布如图所示。有趣的是,轨迹电位与(对于这个样品)右上方的停留电位相对应。中间的行显示了三个最可能(左)和最不可能(右)的转移矩阵,根据这个先验信念的说明。注意状态标号中的简并:从左边开始的第一次和第二次跃迁看起来是不同的,然而重新排列标号后,可以看到第二次跃迁也是一个轨迹——其中一个跃迁有轻微的不确定性。这些转移矩阵的范例轨迹显示在下面的相应面板中,从第一个隐藏状态(青色)开始。需要观察的关键是,可能与亚稳态动力学貌似相关的轨迹是由,且仅由那些具有高先验概率(或低先验势)的概率转移矩阵产生的。在这个例子中,最可能的先验概率转移矩阵是四个状态之间的一个确定轨迹,它将对应一个稳定的异宿环。由不太可能的矩阵产生的轨迹在短时间后收敛于一个单一的状态。

有了上述的巡回先验,我们就可以在一个3(nats)的Occam窗口内,对给定数量的隐藏状态,确定可能的先验转移矩阵。为了处理状态标号的简并性,我们考虑了每个转移矩阵的所有排列,并将列项视为狄利克雷分布的浓度参数。这提供了每个置换跃迁和相同大小的正则轨迹(循环通过状态1到n)之间的KL差异。这允许只保留从正则轨迹发散最小的排列(跃迁)矩阵。此外,所有隐藏状态序列都假定从状态1开始。这种状态的一致重新排序或对齐解决了退化标记,并使人们能够对(唯一的和对齐的)过渡先验执行详尽的搜索——这也作为状态的后验和相关轨迹的初始化。

在所有可能的先验条件下倒置隐马尔可夫模型(使用贝叶斯模型约简),然后可以通过将每个先验视为一个模型来执行贝叶斯模型平均。这需要用每个先验的相关证据(基于相关的自由能)来加权转移矩阵的后验狄利克雷参数。至关重要的是,在该模型平均过程中包含了巡回先验概率;将证据转换为每个连接状态转换模型的后验概率。

2.4 贝叶斯模型比较

如上所述,我们正在解决的推理问题是极其病态的。这是因为有大量的连接状态转换可以解释相同的数据。然而,我们可以通过仔细说明推论来巧妙地解决这个问题,这些推论是基于人们想要问他们的数据的那类问题的——也可能是不可能的。简而言之,我们把贝叶斯模型在群体层面的比较作为最终目标。

对于任何给定的主题,我们都有兴趣比较具有和不具有有效连接状态之间转换的模型。形式上,这要求多个连接状态模型的证据要大于单个连接状态模型(即没有转换)。在确定了最佳状态数大于1之后,人们可以通过比较有和没有先验的模型来询问是否存在有效连接的证据。最后,如果有证据支持(或反对)一个轨迹,我们可以有意义地解释这些瞬态动力学的参数性质。通过仿真,我们将证明这种搜索过程(使用贝叶斯模型比较)正确地从不规则或非轨迹中消除了轨迹,并正确地识别连接状态的数量。在群体比较方面,我们可以重复上述步骤,有或没有在受试者水平上建立群体差异模型。换句话说,我们可以先确定所有被试的最佳模型,然后询问在最佳模型下,组内具体参数是否存在差异。在接下来的内容中,我们将使用合成数据说明这些过程。在随后的工作中,我们将把本文中描述的分析应用到实证数据中,以说明可以解决的各种问题。

3.模拟说明

3.1仿真设置

在本节中,我们将描述分析由隐藏(马尔科夫)状态之间的转换生成的合成数据的设置。通过仿真验证了该方案的有效性;也就是说,当连接性出现结构性波动时,它可以恢复这些波动。我们考虑了两种结构性波动;即规则轨迹和不规则轨迹。对于前者,我们假设连接状态的连续符合SHC,每个状态的停留时间与分段长度相对应。

另一种形式的状态转移概率——我们称之为不规则轨迹——本质上是一个较慢的SHC,对于一个状态子集有较大的停留时间。这种不平衡——在异宿环周期内——违反了式(1)中所有三个先前的潜在项。虽然这是明显的停留先验,但增加停留时间会导致从当前状态移动到下一个状态的不确定性;从而增加了转移矩阵的熵。此外,这种隐含的转移不确定性意味着每个状态被访问的次数对于任何样本轨迹或序列都是不确定的。这影响了不同状态对循环的贡献,违反了等分布先验。总之,不规则轨迹具有非轨迹属性,我们希望通过模型比较能够识别出这一点。我们将在讨论中讨论这些不同的过渡模式的理论和经验含义。

简而言之,我们模拟了两对受试者的fMRI时间序列。这是说明如何测试组内和组间效应所需的最小受试者数量。每个受试者的数据包括9个时期128次扫描,TR为2秒。这些数据是由神经元活动的无标度随机波动(指数为1)和(区域特定的)观测噪声(指数为1/2)产生的。在这些模拟中,状态相关的连通性只是在一个层次连接网络或图的第一个、第二个和第三个节点中增加了约50%的自抑制。

在第一对受试者中,在128次扫描的每个分段之后,连接通过三个隐藏状态以一种规则的方式(即1、2、3、1、2、3等)切换到另一个(依赖于状态的)模式。对于第二组,使用了相同的依赖状态的连接配置文件,但使用了不规则的交换。具体地说,我们在状态3中模拟了一个停留时间增加的慢轨迹。从这个过渡中生成的状态序列(并用于仿真)为:(1,2,3,3,1,2,3,3)九个分段。预定义的连接模式(与每个隐藏状态相关联)用于指定相应的spDCM内核,将内源性神经波动转化为bold信号。图4提供了神经元和血流动力学系列的代表性模拟。总之,我们模拟了两组(即对)具有规则和不规则轨迹的受试者的时间序列。两组之间的差异是微妙的;它们的区别只是相同连接状态之间的状态过渡。产生这种差异的原因是本文讨论的动态功能连接分析。在接下来的内容中,我们首先关注的是动力学变化是否可以在组内水平上恢复。然后我们将转向组间比较,看看我们是否能识别出有规则轨迹和不规则轨迹的受试者之间的区别。

图4合成数据和参数估计(常规轨迹组)

图4:这张图展示了合成时间序列和在fMRI中状态相关连通性的隐马尔可夫模型反演后的各种连通性估计。图A显示了因果网络结构。在图B中,前三个图显示了单个被试的模拟时间序列。第一张图显示了驱动神经元反应的内源性波动。第二幅图(右上角)显示了神经网络中三个节点的神经元反应(彩色线)和它们引起的血液动力学波动(青色线)。这些血流动力学信号产生BOLD响应,加上观测噪声,构成模拟信号——如图3和4所示。为清晰起见,插入图中将三个模拟区域的BOLD信号分开。叠加的分段(蓝色)代表用于划分时间序列的(Hanning)窗口。从整个时间序列的标准spDCM反演中,使用贝叶斯参数平均值对每个分段进行反演,作为先验期望(具有非常精确的收缩先验)。少数选定的连接允许在不同的分段之间变化(通过放松这些连接的收缩先验)。在这个例子中,每个节点的固有(自抑制)连接参数被允许随着时间的变化而变化。最后时期的后验密度显示在第五(第三行)图中。灰色条形代表后验期望,粉色条形代表90%贝叶斯置信区间。用来模拟数据的连通性值显示为黑色条。从这些结果中可以明显看出,连通性的总体概况已经被捕获;然而,有一个条件存在高度不确定性-如置信或贝叶斯可信区间表明。注意,其他(保守)连接的后验估计是令人满意的。下面的面板显示了所有18个分段的真实连接参数。这九个参数对应于耦合三个节点的邻接矩阵(A)。注意,只有三个连接参数发生了变化,因为我们在外部(节点间)波动之前应用了精确收缩。中间的面板报告了使用隐马尔可夫模型(HMM)的经验(PEB)先验之前(中)和之后(右)的最大后验概率估计。最终(PEB)估计和状态依赖连接更改的真实模式之间的一致性并不完美,但合理。这些后验估计是基于HMM提供的经验先验,其后验预期如图6所示。这个说明性分析说明了如何在已知状态数的轨迹跃迁的前提下,使用PEB估计隐藏或潜在连通状态之间的跃迁。然而,我们现在必须使用贝叶斯模型比较,来确定这个轨迹模型是否是对数据的最佳解释。

3.2 模型反演

在生成了所有合成受试者的fMRI数据后,我们进行了模型反演,以描述功能连通性的后续波动。在图4的左中图中,叠加的分段(蓝色部分)表示应用于时间序列分段的Hanning窗。然后,在对每个受试者的时间序列进行反演之后,使用贝叶斯参数平均值(对受试者)对每个受试者的分段进行反演,作为先验预期,具有非常精确的收缩先验。选择的连接数量允许在不同分段之间变化(无信息收缩先验);即每个节点的固有(自抑制)连通性参数。图4中下方的面板报告了在应用隐马尔可夫模型(HMM)的经验先验(PEB)之前,从这个程序(从常规轨迹对象)估计的最大后验概率(MAP)。

使用HMM的经验先验所提供的后验估计(与用于生成数据的值相关)的改进是不言而喻的。换句话说,知道这些状态是由连接的潜在状态之间的轨迹跃进产生的,允许我们恢复实际产生时间序列的状态。

图4表明,可以从观测数据的频谱密度特征恢复(连通性)状态转换的动态结构。然而,要做到这一点,我们需要知道产生异宿环的状态数和超参数。在经验背景下,人们不会知道这些超参数。接下来,我们考虑潜在态数和超参数的取值范围,这样每个组合提供了一个(先前的)模型和一个相关的模型证据。然后可以使用模型比较来确定状态转换(即非平稳性)的存在性、潜在状态的数量和轨迹属性的强度

3.3贝叶斯模型比较

本节举例说明使用贝叶斯模型比较来评估不同模型的证据;即,在未知数量的隐藏或潜在连通状态之间的规则或不规则轨迹跃迁模型。简而言之,我们在不同先验下重复上述反演,以评估每个先验假设的证据。在我们的案例中,先验影响了模型参数的特点;第一,连接状态的数量,第二,关于状态转换形式的先验信念的强度,由方程(1)中的超参数参数化。

概括一下,状态转换的存在需要n>1。如果n>1,我们可以推断β>1。这是因为当β=0时,方程(1)中关键项的先验消失。这意味着我们可以搜索一个跨越不同值,并记录每个值组合的自由能(在必要时使用不同的初始化,或在适当时使用贝叶斯模型简化)。通过将一个softmax函数应用到对log-evidence的逼近中,可以估计所有超参数组合,并在子集上边缘化。

接下来,我们将比较n=1和n>1模型的概率,以确定连接状态之间是否存在过渡。模型比较结果如图5所示。图5:该图显示了BMC如何描述(模拟的)数据的主要属性;也就是说,存在状态转换,即隐藏状态的最佳数量(即模型大小),以及跃迁的轨迹性质(即轨迹证据)。这些都是通过搜索一个(先验)模型空间来实现的。在记录每个组合的自由能后,通过softmax函数对近似对数模型证据进行估计,以估计所有组合的联合概率。此后,在这个空间的子集上的边缘化提供了在上方面板的条形图中所示的模型可能性。具体来说,非平稳性是n>1模型的概率,对后验置信度高的两组模型都建立了非平稳性。轨迹的证据反映了模型在轨迹先验(即β>0)下反转的概率,而不是无轨迹先验。因此,由于常规轨迹组和BMC(正确地)在不规则轨迹组中检测到某些非轨迹属性的存在,已经确定了轨迹的存在。图C提供了n=3时高参数(α,β)的相关边际可能性的例子。图D将超参数边缘化,以混淆矩阵的形式显示潜在状态数n的边际可能性。这个混淆矩阵是基于不同数量的隐藏或潜在连接状态生成的模拟数据(混淆矩阵的每一列对应于不同的数据集)。

图5贝叶斯模型比较

高轨迹证据表明,数据是通过连接状态产生的一个周期。例如,我们模拟的常规轨迹数据支持轨迹假设(如图5A所示);因此,这些数据的证据是最大的。

为了进一步说明这种贝叶斯模型比较,我们使用不同数量的状态重复上述分析,看看我们是否可以恢复用于生成数据的数量。简单地说,我们生成了不同数量的隐藏态之间具有规则轨迹的数据;即n={1,2,3,4},并对每个模拟数据集的边缘后验值进行了评估。这允许我们构建一个后验混淆矩阵,矩阵的每一列对应于状态数的后验(边际)概率。理想情况下,这个混淆矩阵将把它的后验概率质量集中在主对角上。换句话说,后验概率应该是用于生成每个时间序列的状态数中最大的。图5D显示了这一分析的结果,并表明使用该方案和模拟设置可以精确地识别潜在连接状态的数量。这些结果是为了说明混淆矩阵的使用,当试图建立噪声水平(或时间序列的长度)如何影响模型可识别性时,混淆矩阵是有用的。

混淆矩阵的第一列(图5D)有一个重要的解释:在缺乏连通性动态的情况下,模型证据正确而准确地表明,仅n=1的连通性状态是解释数据的必要条件;换句话说,没有动态的功能连接。之前的研究强调了在FC波动中检测真(非)稳定的推理方法的需要。然而,零假设通常通过测试时间序列本身的非平稳性来评估(使用替代数据),而不是连接性的变化。目前的贝叶斯方法为平稳(n=1)和非平稳(n>1)有效连通性模型提供了明确的证据。这种(贝叶斯)推断也适用于相关的功能连接,因为动态EC提供了DFC的完整描述。总而言之,我们可以利用模型证据的自由能界限来优化模型的参数和超参数——以确定数据是如何生成的最佳解释。在前面,贝叶斯模型比较用于识别连接状态(和超参数)的数量,生成连接状态转换的巡回。在下一节中,我们将说明如何使用贝叶斯模型比较来识别受试者EC动态的差异。简而言之,这涉及到将允许组间参数差异的模型与不允许组间参数差异的模型进行比较。

3.4受试者的比较组

在这一节中,我们转向分析被试之间的效果;在这里,测试上述两组实验对象之间的差异。我们首先测试任何组内差异(在每组的两个受试者之间)。这种形式的贝叶斯模型比较可以通过对两个被试各时期的隐马尔可夫模型进行反演,并将每个被试分别反演后的近似解析表达式与对数似然函数之和进行比较来快速有效地实现。这种差异为一个模型提供了证据,在该模型中,状态转换和相关的依赖于状态的连接允许在两个组(或被试)之间存在差异。在这个例子中,我们对每对受试者使用了相同的参数(和超参数),毫不意外地,我们发现了强有力的证据证明模型没有差异。图7右下方显示了对两个受试者分别进行估计时的状态依赖连接的后验估计。虽然它们的绝对值不同,但它们的轮廓是相似的。对于不规则轨迹组也得到了类似的结果(即强有力的证据表明组内差异为零)。伴随的状态转移估计如图8所示。

图7 隐马尔可夫模型(正则轨迹组)的贝叶斯模型比较

图7:该图说明了贝叶斯模型反演和比较的关键方面。左上方的面板显示了在HMM反演的五次迭代中,对于一个具有三种隐藏状态的模型,近似解析表达式对对数似然函数值的贡献。彩色线以青色线表示对总近似解析表达式(即自由能)的相对贡献。蓝线对应的是关于隐藏状态的后验的对数似然值。这种近似解析表达式的增加大大弥补了每个DCM级别上增加的复杂性(用红线表示)。在这个例子中,由于概率转移矩阵(绿线)的参数所引起的复杂性的贡献是非常小的。注意,该方案收敛于少量的迭代。对包含1、2、3和4个隐态的隐马尔可夫模型,计算了收敛后的总自由能。

四个模型的后验概率结果显示在右上角。在这种情况下,我们几乎可以确定存在三种隐藏状态。下面的两幅图展示了模型比较,即测试组间差异——在这个例子中是两个模拟对象之间的差异。这种形式的贝叶斯模型比较可以快速有效地实现,方法是将两个实验对象的所有分段串联起来进行隐马尔可夫模型的反演,并将每个实验对象数据的一个模型分别进行反演时,将后续的近似解析表达式与对数似然函数之和进行比较。这种差异为一个模型提供了证据,在该模型中,状态转换和相关的依赖于状态的连接允许在不同的被试之间存在差异。

在这个例子中,我们使用相同的参数为两个对象生成数据,毫不意外地,找到了强有力的证据,证明模型没有差异。右下角显示了对两个被试分别进行估计时的状态依赖连接的后验估计。虽然它们的绝对值不同,但它们的轮廓是相似的。对于不规则轨迹组,也获得了类似的结果(即快速收敛,模型大小正确,没有差异的有力证据)。在下一节中,我们将重新讨论上面的模拟,同时解决一些有关网络大小和关键数据特性的实际问题。

图8 fMRI数据的隐马尔可夫模型(不规则轨迹组)

图8:该图总结了使用第二模拟组数据进行模型反演后参数的后验预期。青色点对应于隐藏状态的真实值(或适当的最大连接强度)。隐藏状态后验和转移矩阵都是精确的。参数波动与模拟值吻合较好。此外,状态相关的连接参数正确地反映了每种状态下的主导连接,具有适度的特异性。通过在分析中包含更多的主题,为DCMs提供更精确的经验先验,这种(状态到连接)映射可能会得到改进。然后,我们用同样的方法测试了两组(即规则轨迹组和不规则轨迹组)之间的差异。两组之间参数差异的证据是积极的,但不强烈。这一不确定的证据可能反映了这两个模拟群具有相同的依赖于状态的连通性参数,并且它们的过渡模式没有本质上的区别。注意,我们不是简单地拒绝无差异的零假设。鉴于这些数据,我们确信我们不知道是否存在差异。换句话说,我们可以断言,这些数据不允许我们自信地消除两个模型或假设之间的歧义。这就引出了一个务实的问题:需要多少受试者才能对群体差异做出明确的陈述?为了说明如何定量地回答这类问题,我们用两个、四个和八个被试重复了上述分析。图9显示了差异的结果。需要观察的关键是,随着受试者数量的增加,近似解析表达式或对数贝叶斯因子的差异变得更加明确(即偏离零)。图9:这张图显示了对数贝叶斯因子的变化(即由变分自由能得分的对数证据的差异),当比较有和没有组特定差异的模型时。群体差异的证据随着受试者数量的增加而出现。按照惯例,近似解析表达式差异约为3(虚线)通常被认为是一个模型优于另一个模型的有力证据。

图9群体差异

图9群体差异的证据,作为被试人数的函数简而言之,人们可以使用模拟数据和贝叶斯模型比较来评估受试者的数量或时间序列的长度,这可能需要解决关于群体效应的关键假设。在实践中,组的差异可能是由于状态转换、连接概要文件或两者的差异而产生的——这可以进一步使用贝叶斯模型比较及相应后验。3.5仿真设置我们首先演示了扩大网络的效果;即增加节点或区域的数量。我们将之前模拟的因果结构和血液动力学方法(图4A)嵌入到一个由五个区域组成的更大网络(图10A)中。我们不假设这些新节点上的瞬时连接动态,而是让它们通过兴奋性和抑制性(外部)连接影响原始区域。其余的设置类似于之前给出的规则轨迹例子。简而言之,我们模拟了两个被试的数据,每个被试包含9个分段;其中每个分段包含T时间样本TR=2秒。网络示意图如图10A所示。

图10:这张图显示了

(A)一个由五个区域组成的网络,其中前三个自连接在各个分段上波动。通过诱导区域1-3的自抑制增加50%(一次一个),在有效连接的参数空间中生成3个状态,构建了依赖状态的连接模式。模拟两名受试者的数据,每个部分包含9个分段,每个分段128个时间样本,TR=2秒。连接模式从一个分段到另一个分段,通过3个参数状态穿过一个规则的轨迹。利用9个Hanning窗将所得时间序列划分为子区间,并对每个分段进行频谱DCM的反演。

(B)贝叶斯模型比较通过在超参数子集(α,β)和模型规模(n)上边缘化P(n,α,β),识别出连通波动的主要属性,如图5所示。在这个例子中,边际似然精确地识别了潜在的非平稳连接动力学、轨迹的存在和正确的模型大小(三种潜在状态);

(C)关键模型参数的后验期望显示状态占据序列和轨迹过渡模式的完美恢复,并有强有力的证据表明两个被试之间没有差异。代表(最终)分段的参数的后验期望被绘制在面板C(右上角)的灰色条形图;叠加的黑色条是用来生成该分段数据的连接值,粉色条表示90%的置信区间。动态自连接的后期望(图C,左中)与模拟的变化一致。按照前面的图,青色点对应于隐藏状态的真实值(或适当的最大连接强度)。

图10 扩展网络上的推理

3.6 描述缓慢过渡

最初,为了关注网络规模的作用,我们将T保持在128个时间样本(每个分段)。这转化为一个在亚稳态(即EC模式)附近停留约4分钟的轨迹。值得注意的是,根据更快采集到的fMRI数据,同样数量的样本可以对应90秒左右的分段。这种(相对较长的)窗口大小适合跟踪缓慢的连接动态。在生成数据之后,我们采用了上面描述的相同的贝叶斯模型反演和比较过程。如前所述,我们假设我们知道将数据划分为更短的区间(频谱DCM的拟合区间)的最佳分段长度:即,9个分段。模型证据记录在超参数和模型尺寸的合理范围内,以提供搜索空间的联合概率分布。随后,贝叶斯模型比较通过边缘化P(n,α,β)来刻画连通轨迹的主要属性。结果总结在图10中。很明显,主要属性(非平稳性、轨迹性和模型尺寸)已经完全恢复(图10B)。

参数的后验期望(即状态序列、过渡模式和自连接中分段到分段的变化)也与用来生成数据的值一致。受试者之间的分析也返回强有力的证据,两个模拟受试者之间没有差异。注意,在这种情况下,估计的DCM连接数量几乎增加了一倍(与图4相比,见图10C右上图)。然而,这些仿真结果表明,在检测和表征慢轨迹动力学时,在网络中添加一些区域并不影响该方案的性能。原因有二:(1)动态连接数没有增加;(2)我们用于参数化(先验)模型空间的巡回先验在检测类SHC行为时特别有效——尽管仍旧推断问题的病态性质。接下来,我们考虑如何稳健地从频谱数据特征推断出更快的轨迹动力学,在同一网络中产生,使用更短的分段。

3.7描述更快的转换

我们重复了上述实验,但这次减少了用于生成和反转非平稳数据的T(每个分段的样本数)。也就是说,我们模拟更快的动态,并相应地使用更短的周期来跟踪它们。具体来说,使用T∈(96;80;64;48)每个分段的样本。分段长度的减少说明了在鞍座附近最短通过时间更短的SHC动力学(即亚稳态EC模式)。换句话说,T对应于在切换到下一个EC模式之前的最小停留时间。其余的设置与前一节中使用的设置相同。模型反演和随后的BMC结果表明,模拟数据的SHC动力学在边际似然中得到了清晰的反映(图11)。也就是说,尽管网络结构扩展,周期缩短,但都能正确地推断出非平稳性、轨迹巡回性和潜在态数的存在。进一步检查参数后验(图12和图13),可以可靠地推断出在所有情况下,状态占有、过渡和连接变化的顺序。组差异的证据要么是强有力的,要么是积极的。值得注意的是,只有当T降到每个分段48个样本时,参数波动才会在相邻的历元上变得模糊,从而损害了推断状态的时间特异性。总之,当应用于理想的功能磁共振数据时,这些仿真说明了动态EC分析用于检测不同速率的轨迹动力学的工作范围。

图11贝叶斯模型对具有较快动力学的扩展网络的比较结果

图11:该图显示了不同转换率下的BMC结果。每个数据集都是基于图10中的网络,使用三种潜在状态(即EC模式)之间的转换轨迹模式生成的。值得注意的是,在128,96,80,64或48个样本的指定时间段后,连接模式发生了切换。横轴值反映了有效连通性保持不变的时间(在样本中),以及用于将数据划分为分段的窗口大小。

图12模型参数的后验期望由具有较快动力学的扩展网络推导而来

图12:补充模型比较结果在图11中,这个图中显示的性能模型拟合(参数)的后期望的分段长度的函数,它表示的最小停留时间轨迹动力学和窗口长度用来将数据划分为分段。(A)使用包含T=96样本的分段,参数流动特征(即状态序列和过渡剖面)被正确地推断出来,零群差异(两个被试之间)的证据是积极的。(B)当T=80个/分段时,关键参数后端完全恢复,连通性波动与模拟变化密切相关。

图13 模型参数的后验期望由具有较快动力学的扩展网络推导而来

图13:补充图11中的模型证据,该图显示了当推断方案操作在更短的数据周期,捕获更快的轨迹跃迁时,参数的后验期望。

(A)对于每个T=64个时间样本的分段,在其后端精确地捕捉到流动特征,这为零群差异提供了强有力的证据。其中两个连接的参数波动是部分相关的,但每个状态最强的连接非常具有指示性。

(B)每个分段T=48样本的状态序列、过渡模式和群证据是准确的,但参数波动在各分段上是模糊的;从而失去了状态的专一性。

显然,分段长度限制了转换的可检测率,并影响了模型反演的质量。事实上,窗口大小的选择在DFC分析中一直存在争议。这在很大程度上是因为DFC解释可能会被由非常短的窗期引起的虚假FC波动所混淆。重要的是,通过有效连通性的生物物理似是而非的模型(特别是DCM),观测函数(即神经血管耦合)和观测噪声被明确地建模,从而将可观测的波动与其原因的动力学分离。但是有效地推断这些原因仍然需要足够的数据。除了参与窗口大小选择的信号处理、统计和优化保留外,一个更基本的问题与潜在动态的相关时间尺度有关。

迄今为止,在神经科学中,连接波动的神经生物学相关的时间尺度仍然不清楚。换句话说,确定揭示神经元相互作用动力学的最具功能性信息的时代大小并非易事。这将我们带入下一个自然的问题:在经验设置中,动态EC分析如何揭示(并被告知)潜在流动动态的内在时间尺度?下一节将讨论这个问题.

3.8最佳分段的长度

连接波动(特别是在静止状态)的功能相关时间尺度很大程度上是未知的,任意的窗长(T)可能会错过重要的动力学。因此,对于给定的一组数据,建立最可信的分段长度将是有用的,从中可以有效地推断EC模态的假定SHC动力学。在本节中,我们将给出一个现实的场景,在该场景中,模型大小和潜在EC动力学的最小停留时间都是未知的。我们用这个例子来说明模型证据是如何指导窗口大小的选择的,以便在存在的时候揭示最相关的轨迹动力学。仿真基于图10中的扩展网络,包括5个区域,3个波动自连接(区域1-3),与3个EC模式相关。轨迹跃进导致EC模式在T=80时间样本(TR=2秒)的每个分段之后发生变化。

每个受试者的数据来自9个连续的分段。在这里,两个实验对象被模拟了同样的连通性变化。假设轨迹动力学,这些数据在一个由分段数(w)和模型尺寸(n)跨度的模型空间下进行了倒置。具体来说,模型空间由(w,n)定义;w∈(6:12),n∈(1:4)。模型反演相关的分段长度在T=9*80/w∈(120;102;90;80;72;64;60)范围内,注意,对于同一代的分段,分段长度随分段数而减小。变分反演提供了不同组合的近似模型证据(即自由能);例如F(w,n)。为了推断最优的潜在状态数,我们在所有窗口长度上汇集了每个模型大小(n)的证据,并挑选了具有最大后验概率的模型大小(假设先验等可能模型):

有了最优模型尺寸(nopt),最重要的任务是推断最优分段长度。在最佳模型尺寸(nopt)与平稳模型(n=1)下,作为分段长度的函数,可以通过检查近似解析表达式来对不同的分段长度进行评分。这就是对数贝叶斯系数(BF)或对数优势比。这里的基本原理是,最佳的分段长度揭示了轨迹存在的最大证据。简而言之:

这个过程的结果如图14所示。在模拟数据集上,已准确推断出最佳模型大小(96%的证据支持n=3),对数比值指向w=9窗口作为最佳选择,这与用于生成数据的窗口长度一致。这些模拟是在一个典型的网络规模(5个节点)上进行的,具有相对较快的轨迹动力学。采用推导出的模型尺寸和最佳分段长度提供了最相关的动态EC分析,并揭示了基础动力学的内在时间尺度,假设轨迹运行。EC分析的后端(假设9个分段)在前面的部分(图12B)进行了说明。重要的是,与前面的例子相比,本文推导的模型大小(图14)没有假设最佳窗口大小的知识。相反,模型大小和分段长度都是通过搜索从数据中推断出来的,如上所述。

图14 最佳分段数或分段长度

图14:从图中可以看出,通过搜索,可以从数据中推断出动态EC分析所需的最有信息量的分段数。总之,数据是由2名受试者的3个状态和9个分段各80个时间样本生成的,使用的网络如图10所示。该数据集使用窗口数(即历元长度)和模型大小的不同组合,w跨越[6-12],n在[1-4]范围,超参数提供了巡回先验(α=4;β=8)。对该模型空间的自由能(即近似对数模型证据)进行了评估,如F(w,n)。通过在窗口数范围内汇集(求和)每个模型大小的证据,可以推断出最佳的潜在状态数(左图)。然后,对每个分段长度计算一个对数贝叶斯因子,用最优尺寸(nopt)对静止模型(n=1)进行可信度评分。在给定的数据集中,产生最高贝叶斯因子的分段长度(即分段个数)被认为与轨迹EC属性最相关。在这种情况下,正确的分段数(9)产生了最高的对数胜算比(右图)。

4.讨论

耦合神经系统的生成模型——可以解释经验观察——使对大脑功能整合的机械性研究,以及隐性地研究亚稳态等现象的作用成为可能。换句话说,使用神经成像数据如何产生的生物基础模型,通过解决一个逆问题,就有可能从测量信号中恢复潜在的动力学。这是动态因果模型的基础。在大多数DCM研究中,推论与会话平均反应及其潜在的连通性有关。在这里,我们提出了一个层次扩展,以适应时间波动(在连续的时期)在定向神经元耦合。具体地说,这个层次模型增加了静止状态fMRI建立的谱DCM。

从概念上讲,我们的分层模型假设大脑在静止状态下的有效连接(即连接的状态或模式)的动态模式之间存在一种没有赢家的竞争。这种流动(即亚稳态)行为的数学图像是一个稳定的异宿通道(SHCh)或稳定的异宿环(SHC)。对于三个竞争者(例如,在我们的模拟中,3个状态),无胜者的竞争自然会导致一个SHC。然而,当一个WLC中有三个以上的参与者时,SHCh不一定是循环的。SHCh可以解释神经元动力学中的可重复性流动(即模式的非随机序列)和刺激引起的可重复性瞬态。然而,SHCh并不需要序列的拟周期递归。这种序列在人类和啮齿动物中被称为准周期模式(QPPs),具有结构化的(和可预测的)重复率和停留时间。因此,基于我们生成模型的先验性,我们确定了一类特定的SHCh,我们将其与一个SHC联系起来,作为亚稳态大脑中准周期性连接模式的恰当描述。重要的是,当过渡具有一定的流动特性时,SHC的瞬态动力学可以用隐马尔可夫模型(EC态间的过渡)来近似;在我们的模型中,这些特征被表示为先验信念。本文构建了层次生成模型(图1),通过仿真建立了该方法的有效性;即生成合成静息状态fMRI时间序列(图4)并将其反演(使用变分贝叶斯,图2)。

我们详细阐述了使用稀疏数据(在本例中,每个时期使用几个分段的fMRI数据)反演深度层次模型所面临的挑战。这个问题是通过采用多起点方法来解决的,该方法对给定数据评估和比较不同的模型(根据先验设定)。具体地说,该模型空间由潜在状态数和流动超参数——即(n,α,β)。通过评估这些参数的不同先验组合的模型证据,可以估计所有组合的联合概率。然后,通过对该联合概率分布的子集进行边缘化,可以恢复非平稳性、模型大小和轨迹状态转变的证据(见图5)。利用模拟数据的先验值(即超参数值),模型反演和比较(使用BMR)返回规则和不规则轨迹跃进的预期参数后值,如图6和图8所示。随附的模型证据(即自由能)进一步用于对受试者进行组内和组间比较(图7),以描述可以通过贝叶斯模型比较检测到的EC动力学参数变化的种类。在这些模拟中,两个模拟组的过渡模式分别是规则轨迹和不规则轨迹。这些转换模式的具体选择是由扰动SHCs的退出时间的概念驱动的。规则轨迹是结构稳定的异宿循环的最简单形式,通过一系列鞍座几乎是确定的进展。这类系统在随机扰动下的行为已经在文献中进行了理论研究

简而言之,小的随机扰动不会改变异宿事件的整体结构,但使事件的持续时间更加随机。在我们的背景下,一个事件将对应一个短时EC模式。特别是(Stone and Holmest, 1990)的研究得出的结论是,虽然微弱的加性噪声并没有从本质上改变相空间中解的结构,但它引起了根本性的变化,导致了“时间尺度的选择”。从这个意义上说,经验估计的EC动力学时间尺度可能有助于提供亚稳态的典型模型(对正常和病理大脑);这反过来可以进一步阐明噪声和歧管不稳定性在诱发潜在改变的异宿结构和时间尺度中的作用,特别是在特定条件和紊乱中。模拟较慢的SHC动力学(通过不规则轨迹)是由经验的DFC发现的动机。

例如,最近的一项研究得出结论,花在访问不同(功能性)连接状态的时间不是随机的,是可遗传的,并预测行为特征。同样的研究进一步表明,大脑活动和(功能)连接的过渡模式不是随机的;这个非随机序列显示了一个分层的时间结构(显示了两个转移);不同的脑转移周期。这些发现(尽管是现象学的)与SHC动力学的概念及其轨迹周期的重要性密切相关。同样地,许多其他研究已经确立了(改变的)功能性状态职业和向人口统计学、意识、认知和临床条件的转变的相关性:参见(Preti et al.,2017)最近的综述。例如,(Yang et al.,2014)的作者发现,在后内侧皮质种子在特定连接状态下的停留时间,预测了心理灵活性和概念形成的主体间可变性。另一项DFC研究(Cabral et al.,2017)发现,在某些FC状态之间存在闭环,与表现不佳的人相比,健康老年人的认知表现保持与他们保持某些(静止状态)FC状态的能力有关。此外,DFC对精神分裂症(SZ)和创伤后应激障碍(PTSD)患者的研究报告称,这些受试者倾向于逗留或陷入某些状态。在SZ中,这些状态在功能上的定义更少(连接更少)。在PTSD患者的案例中,受试者似乎无法脱离的状态被归因于消极情绪。这些都是病理状态停留时间的迹象(可以表现为不规则的轨迹)。除了转换的固有时间尺度之外,另一个可以量化(跨条件或群体)的潜在有用特性是状态空间维度——即EC模式保留的大小。这是我们通过BMC推断的模型大小(n)(图5)。这一特征在与连接缺损增强或缩小相关的条件或障碍中尤其相关。

例如,最近的研究表明,迷幻剂似乎增强了状态空间的维度,并增加了在这个扩大空间中的穿越率。相反,另一项功能连通性研究表明,SZ患者似乎被限制在更小的状态空间(与健康对照组相比),包括实现的元状态数量和状态之间的距离(区别)。这些观察结果可能会被动态EC有效地探索,以进一步阐明与精神病理学相关的连接状态的神经元基础。在讨论了动态模型的一些潜在应用之后,我们考虑了有效使用和扩展该模型的一些实用要点。根据我们目前的实验,该方案的限制不是网络本身的大小。从短周期的频谱特征估计(波动)DCM参数是一个难点。因此,只要您打算跟踪一些特定的连接(并且满足于其他连接的时期平均值),扩展网络就不是问题。事实上,近年来已经成功地实现了大尺度(含数十个节点)频谱DCM的识别。为了将这一方案应用于此类网络,需要预先指定一些感兴趣的连接。例如,我们(在本文的模拟中)的重点是神经元网络中抑制性自我连接的时间演化。这种选择的动机有以下几个方面:

(1)大脑中无胜者竞争的关键机制是抑制;

(2)内在连接的解释力最近在spDCM对癫痫发作的研究中被强调,使用颅内脑电图记录;

(3)脑区对内在抑制传入物的敏感性与局部兴奋-抑制平衡有关,这是病理生理学连接的重要特征;

(4)随着时间的推移,跟踪这些区域的兴奋性可以让人们估计在皮层层次的不同层次上的停留时间(例如,在感觉和认知状态中停留的时间更长),据报道,这是一种一致的、遗传的、与认知特征相关的受试者特定测量方法。

然而,一般来说,在这个动态框架中,对于希望跟踪的(内在的、外在的或组合的)连接没有操作上的限制。另一个重要的问题是窗口的大小、形状和重叠,以便将数据划分为各个分段。我们使用了Hanning窗(这是为了在频率和振幅保存之间进行权衡),有50%的重叠。但是,对于任何给定的数据集(即使用为任何模型提供最大相对证据的数据特性),可以使用BMC优化这些选择。例如,我们已经展示了这个程序如何确定最佳分段大小(图14)。在实践中,周期的数量进一步受到数据长度的限制(在这种情况下,静止状态fMRI)。相关研究(Park et al.,2017)使用了来自人类连接组项目(HCP)数据库的长rsfMRI会话的每个分段200个时间样本。这样长的窗口适合跟踪慢动态。在扩展的网络(图10A)上,我们减少了分段大小(减至每个窗口48个样本),以遵循更快的过渡。

通过模型证据揭示了快速流动动力学的存在(图11)。至于后端,在这里使用的频谱DCM生成模型下,跟踪非常快速的转变(使用48个样本每个分段)会混淆EC状态的参数识别(图12-13)。然而,其余参数后验和模型证据对这一具有挑战性的场景是稳健的。我们还描述了一个搜索和BMC程序,用于选择最有效的窗口大小,当跟踪未知速率的轨迹动力学(图14)。人们还可以考虑使用自适应分段长度,这是受到诸如变点检测等方法的激励。最后,我们重申,这些数据特性参数可以使用BMC基于任何给定数据的(相对)模型证据进行优化。

总结:

总而言之,本文在一个通用贝叶斯框架下提出了一个分层的生成模型,可以在层次结构的第一层容纳不同的模型(即除了用于fMRI的spDCM);因此,并将层次模型(瞬态动力学)与其他神经成像数据(如M/EEG)或电生理记录的生成模型相结合去解释从神经元层面到血流水平的动力学过程以及大脑在这个动力学过程中的潜在状态和停留时间以及演化轨迹。尽管这些模式有其自身的逆问题,但较高的时间分辨率和丰富的数据可能会解决fMRI时间序列分层模型反演中固有的一些优化问题。本文提出的方法可能在未来的研究中具有一定的应用能力。例如使用来自临床人群的经验数据来证明本方法的预测有效性。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值