Nature Neuroscience:认知计算神经科学

        为了了解认知是如何在大脑中实现的,我们必须建立可以执行认知任务的计算模型,并通过大脑和行为实验来测试这些模型。认知科学已经发展出将认知分解为功能组件的计算模型。计算神经科学模拟了相互作用的神经元如何实现认知的基本组成部分。现在是时候将大脑计算的各个拼图组合起来,并更好地整合这些独立的学科了。现代技术使我们能够以前所未有的方式测量和操纵动物和人类的大脑活动。然而,只有在用来测试大脑计算模型时,实验才能产生理论见解。在这里,我们回顾了最近在认知科学、计算神经科学和人工智能交叉的工作。在感知、认知和控制任务中,模拟大脑信息处理的计算模型开始被开发出来,并利用大脑和行为数据进行测试。本文发表在Nature Neuroscience杂志。

1. 介绍

      要想了解大脑的信息处理过程,就需要我们建立能够执行认知任务的计算模型。艾伦·纽维尔在1973年的评论《你不可能用20个问题来挑战自然并获胜》中阐述了支持任务执行计算模型的观点。纽威尔是在批评认知心理学的现状。该领域习惯于一次测试一个关于认知的假设,希望迫使自然回答一系列二元问题,最终揭示大脑的算法。在他看来,假设检验需要通过构建综合任务执行计算模型来补充。只有在计算机模拟中进行综合,才能揭示所提出的组件机制的交互实际需要什么,以及它是否可以解释所讨论的认知功能。

       在此,我们认为解释认知如何从神经生物学上可信的动态成分中产生任务执行计算模型将是一个新的认知计算神经科学的核心。我们首先简要地追溯了认知科学和脑科学的发展过程,然后回顾了几个令人兴奋的近期发展,这些发展表明,使用神经生物学上可信的人工智能(AI)模型,有可能实现认知科学(解释人类如何学习和思考)和计算神经科学(解释大脑如何适应和计算)。

      在20世纪80年代,认知科学在符号认知结构和神经网络方面取得了重要进展,利用人类行为数据在候选计算模型之间进行评判。然而,计算机硬件和机器学习还不够先进,无法模拟完全复杂的认知过程。此外,这些早期的方法仅依赖于行为数据,而没有利用大脑解剖和活动所提供的限制。

       随着人类功能性脑成像技术的出现,科学家们开始将认知理论与人脑联系起来。这一努力后来被称为认知神经科学。认知神经科学家开始将认知心理学的盒子(信息处理模块)和箭头(模块之间的相互作用)映射到大脑上。就参与大脑活动而言,这是向前迈出的一步,但就计算的严密性而言,这是后退了一步。用大脑活动数据测试认知科学任务执行计算模型的方法还没有构想出来。结果,认知科学和认知神经科学在20世纪90年代分道扬镳。

       认知心理学的任务和高级功能模块理论为脑电图、正电子发射断层扫描和早期功能磁共振成像(fMRI)等空间分辨率较低的功能成像技术绘制人类大脑的粗尺度组织提供了合理的起点。受认知心理学对模块的概念的启发,认知神经科学开发了自己的领域,由20个与自然有关的问题组成。一项给定的研究可能会问,是否可以在大脑中找到特定的认知模块。该领域将越来越多的认知功能映射到大脑区域,为人类大脑的整体功能布局提供了一个有用的粗略草案。

       无论比例如何,大脑图谱都不能揭示计算机制(图1)。然而,图谱确实为理论提供了约束。毕竟,信息交换产生的成本与通信区域之间的距离成比例——在物理连接、能量和信号延迟方面的成本。我们期望需要在高带宽和短延迟下交互的区域被放置在一起。更宽泛地说,生物神经网络的拓扑结构和几何结构限制了它的动力学,从而限制了它的功能机制。功能定位结果,特别是结合解剖连接,可能最终证明有用的建模大脑信息处理。

 图1 现代成像技术提供了关于大脑活动的空前详细的信息,但数据驱动的分析只支持有限的见解。

     A 双光子钙成像结果显示,当动物与虚拟环境相互作用时,在幼体斑马鱼中同时测量到大量细胞的单神经元活性。

     B 人类功能磁共振成像结果揭示了一幅详细的语义选择反应图。这些研究一方面说明了现代大脑活动测量技术在不同尺度(A,B)上的威力,另一方面也说明了从这些数据集得出关于大脑计算的见解所面临的挑战。两项研究都测量了复杂、时间连续、自然体验期间的大脑活动,并使用了主成分分析(A,底部;B,上)提供活动模式及其代表性意义的总体视图。

      尽管方法论上存在挑战,但认知神经科学的许多发现为我们的研究提供了坚实的基础。例如,用fMRI探测的非人灵长类动物表现出面孔选择区域,而这些区域避开了侵入式电极的探测,因为后者不能在大视野下提供连续的图像。面部感知的例子表明,一方面,解剖基础图谱绘制和神经元反应表征方面取得了坚实的进展,另一方面,缺乏明确的计算模型。这些文献确实为计算机制提供了线索。面部识别的大脑计算模型必须解释面部选择单元的空间集群,以及通过fMRI和侵入性记录观察到的选择性和不变性。

      认知神经科学已经绘制出人类和非人灵长类动物大脑的全脑功能布局图。然而,它还没有实现对大脑信息处理的完整计算。未来的挑战是建立与大脑结构和功能一致的大脑信息处理计算模型,并执行复杂的认知任务。以下认知科学、计算神经科学和人工智能方面的最新发展表明,这可能是可以实现的。

       1. 认知科学自上而下,将复杂的认知过程分解为计算组件。由于不需要理解大脑数据,它已经开发了认知层面的任务执行计算模型。一个成功的例子是贝叶斯认知模型,它将关于世界的先验知识与感官证据最佳地结合起来。贝叶斯模型最初应用于基本的感觉和运动过程,现在已经开始涉及复杂的认知,包括我们的大脑模拟物质世界和社会世界的方式。这些发展发生在与统计和机器学习的交互作用中,其中出现了关于概率经验推断的统一观点。此外,它还提供了生成模型的近似推理算法,生成模型可以随着可用数据的复杂性而增长——这可能是现实世界智能所需要的。

       2. 计算神经科学采用了一种自下而上的方法,展示了生物神经元之间的动态交互如何实现计算组件功能。在过去的二十年里,这一领域发展了基本计算组件的数学模型,并利用生物神经元实现了它们。这些因素包括:感觉编码、正则化、工作记忆、证据积累和决策机制以及运动控制。这些组件功能中的大多数在计算上都很简单,但它们为认知提供了构建模块。计算神经科学也开始测试复杂的计算模型,这些模型可以解释大脑的高级感觉和认知表征。

        3. 人工智能已经展示了如何将组件功能组合起来创造智能行为。早期的人工智能未能实现它的承诺,因为智能所需的丰富世界知识既不能被设计,也不能被自动学习。机器学习的最新进展带来了感知、认知和控制方面的挑战。许多进展都是由认知层面的符号模型推动的。最近一些最重要的进展是由深度神经网络模型驱动的。这些模型只使用了生物神经元动态能力的一小部分,从动作电位等基本特征中抽象出来。然而,它们的功能受到了大脑的启发,可以通过生物神经元实现。

       这三个学科为执行认知任务并解释大脑信息处理和行为的生物学上可信的计算模型贡献了互补的元素(图2)。在这里,我们回顾了文献中迈向认知计算神经科学的第一步,它符合认知科学和计算神经科学成功的综合标准。如果计算模型要解释动物和人类的认知,它们就必须表现出智能。因此,人工智能,尤其是机器学习,是一门为认知计算神经科学提供理论和技术基础的关键学科。

 图2 理解大脑如何工作意味着什么?认知计算神经科学的目标是通过执行现实世界认知任务的生物学上可信的计算模型来解释动物和人类神经元活动和行为的测量。从历史上看,每个学科(圆圈)都解决了这些挑战(白色标签)的一个子集。认知计算神经科学努力同时迎接所有的挑战。

      首要的挑战是在理论和实验之间建立坚实的桥梁。本文的第一部分描述了自下而上的发展,从实验数据开始,并试图在理论的方向上从数据建立桥梁。在给定大脑活动数据的情况下,连接模型旨在揭示大脑激活的大规模动态;解码和编码模型旨在揭示大脑表征的内容和格式。该文献中使用的模型为计算理论提供了约束,但它们通常不能执行问题中的认知任务,因此无法解释任务表现的计算机制。

      这篇文章的第二部分描述了在相反方向进行的发展,建立了从理论到实验的桥梁。我们回顾了已经开始的用大脑和行为数据测试任务执行计算模型的新兴工作。这些模型包括认知模型,具体到抽象的计算水平,其在生物大脑中的实现还有待解释;以及神经网络模型,它从神经生物学的许多特征中抽象出来,但似乎可以用生物神经元实现。

2. 从实验走向理论

互联互通和动态模型

      从测量的大脑活动到计算理解的一个途径是模拟大脑的连通性和动力学。连接模型超越了激活区域的定位,并描述了区域之间的相互作用。神经元动力学可以在多个尺度上进行测量和建模,从局部相互作用的神经元集合到全脑活动。大脑动力学的第一个近似是由测量的响应时间序列之间的相关矩阵提供的,它表征了位置之间两两的“功能连接”。关于静息态网络的文献已经探索了这种方法,时空矩阵的线性分解,如空间独立分量分析,同样捕获了跨时间位置之间的同时相关性。

       通过对相关矩阵进行阈值化,可以将区域集合转化为无向图,并利用图论方法进行研究。这样的分析可以揭示出“社区”(紧密联系的地区集合)、“枢纽”(与许多其他地区相连的地区)和“富人俱乐部”(枢纽社区)。连通性图可以从解剖学或功能测量中得到。解剖连接矩阵通常类似于功能连接矩阵,因为区域通过解剖路径相互作用。然而,解剖连接产生功能连接的方式可以通过考虑局部动力学、延迟、间接相互作用和噪声来更好地建模。从局部神经元相互作用到跨越皮层和皮层下区域的大规模时空模式,自发动态的生成模型可以用大脑活动数据进行评估。

      有效的连通性分析采取了一种更假设驱动的方法,在动力学的生成模型的基础上表征一小部分区域之间的相互作用。激活映射将认知心理学映射到大脑区域,而有效的连接分析将箭头映射到成对的大脑区域。这一领域的大多数工作都集中在描述大脑区域整体激活水平上的互动。与传统的脑成像方法一样,这些分析基于区域平均激活,测量整体区域激活的相关波动,而不是区域之间的信息交换。

      对有效连接和大规模大脑动力学的分析超越了一般的统计模型,如用于激活和基于信息的大脑绘图的线性模型,因为它们是生成模型:它们可以在测量水平上生成数据,是大脑动力学的模型。然而,它们不能捕捉所代表的信息以及大脑是如何处理这些信息的。

模型的多种含义

       “模型”这个词在大脑和行为科学中有很多含义。数据分析模型是帮助建立测量变量之间关系的通用统计模型。同样,有效的连接模型和因果相互作用模型也是数据分析模型。相反,盒子和箭头模型是一种信息处理模型,它的形式是标记的盒子,代表认知组件功能,箭头代表信息流。在认知心理学中,这样的模型为大脑计算理论提供了有用的草图,尽管定义不明确。类似地,单词模型是大脑信息处理理论的草图,它是由语言描述模糊定义的。oracle模型是一种大脑反应模型(通常以数据分析模型为例),它所依赖的信息对被建模的动物的大脑来说是不可获得的。一个oracle模型可以提供在一个区域中呈现的信息及其表征形式的有用的描述,而不需要说明大脑如何计算表征形式的任何理论。相比之下,脑计算模型(BCM)是一种模拟大脑信息处理的模型,它在某种抽象层次上模拟了某些任务的表现。例如,在视觉神经科学中,图像可计算模型是一种视觉处理BCM,它以图像位图作为输入,并预测大脑活动和/或行为反应。深度神经网络提供了图像可计算的视觉处理模型。行为解码模型是将一些内部表示转换为行为输出的BCM。通过感官输入预测行为输出的心理物理模型和执行认知任务的认知模型是在高描述水平上形成的BCM。标签BCM并不意味着该模型是可信的或与经验数据一致。通过基于经验理由拒绝候选BCM,我们取得了进步。最后,“模型”一词用于指大脑所使用的世界模型,如基于模型的强化学习和基于模型的认知。

解码模型

       另一个理解大脑计算机制的途径是揭示大脑每个区域中存在的信息。解码可以帮助我们超越激活的概念,激活表明一个区域参与一项任务,揭示一个区域的活动中存在的信息。当特定的内容可以从大脑区域的活动中解码时,这表明信息的存在。将大脑区域称为“代表”内容的区域,增加了一种功能性解释:信息的目的是通知接收这些内容信号的区域。最终,这一解释需要通过进一步分析信息如何影响其他区域和行为来证实。

      解码起源于神经记录文献,并已成为研究神经影像学表征内容的流行工具。在最简单的例子中,解码揭示了两种刺激中哪一种产生了可测量的反应模式。表征的内容可以是一个感官刺激的特征(在一组可选刺激中被识别)、一个刺激的特性(如光栅的方向)、一个认知操作所需的抽象变量,或一个动作。通常情况下,当解码器是线性的时候,可解码信息的格式似乎可以被下游神经元在一个单一的步骤中读出。这样的信息在活动模式中被认为是“显性的”。

       解码和其他类型的多元模式分析帮助揭示了区域表征的内容。然而,解码特定信息的能力并不等于对神经元代码的完整解释:它不指定表示格式或其他可能出现的信息。最重要的是,解码器一般不构成大脑计算的模型。它们揭示的是某些方面,而不是大脑计算的过程。

表征模式

       除了解码,我们想详尽地描述一个区域的表征,解释它对任意刺激的反应。完整的描述还可以定义任何变量可以被解码的程度。表征模型试图对表征空间进行全面的预测,因此对计算机制提供了比解码模型更强的约束。

      在文献中介绍了三种类型的表征模型分析:编码模型,模式成分模型和表征相似性分析。这三种方法都检验了关于表征空间的假设,这些假设都是基于对实验条件的多元描述——例如,对一组刺激的语义描述,或者处理刺激的神经网络模型的一层活动模式。

      代表性模型通常是根据对刺激的描述来定义的,例如人类观察者提供的标签。在这种情况下,一个解释特定区域的大脑反应的表征模型提供的不是大脑计算的解释,但至少是对表征的描述。当模型推广到新的刺激时,这样的解释可以成为迈向计算理论的一块有用的垫脚石。重要的是,表征模型还使我们能够在大脑计算模型之间做出判断。

      在本节中,我们考虑了三种类型的模型,它们可以帮助我们从大脑活动数据中收集计算洞察力。连接模型捕捉区域之间动态交互的各个方面。解码模型使我们能够观察大脑区域,并揭示哪些可能是它们的表征内容。表征模型使我们能够测试完全表征一个区域表征空间的显式假设。所有三种类型的模型都可以用来解决理论驱动的问题——采用假设驱动的方法。然而,在缺乏任务执行计算模型的情况下,他们受制于Newell的论点,即提出一系列问题可能永远不会揭示我们试图解释的认知壮举背后的计算机制。这些方法无法完全建立起通向理论的桥梁,因为它们没有测试那些精确地说明某些认知功能下的信息处理是如何工作的机械模型。

3. 从理论到实验

      为了在实验和理论之间建立一个更好的桥梁,我们首先需要充分地说明一个理论。这可以通过数学上定义理论并在计算模型中实现来实现。计算模型可以位于不同的描述层次,权衡认知保真度和生物保真度(图3)。只捕捉神经元成分和动力学的模型往往无法解释认知功能(图3,横轴)。相反,只捕捉认知功能的模型很难与大脑联系起来(图3,纵轴)。为了将思维和大脑联系起来,模型必须试图捕捉行为和神经元动力学的方方面面。最近的进展表明,来自大脑的约束有助于解释认知功能,反之亦然,将权衡转化为协同作用。

 图3 过程模型的空间。

      大脑中发生的过程的模型可以在不同的描述水平上定义,并可以在参数复杂性(点大小)和生物(水平轴)和认知(垂直轴)保真度上有所不同。自下而上的建模方法(蓝色箭头)首先旨在捕捉生物神经网络的特征,如动作电位和单个神经元的多个单元之间的相互作用。这种方法不考虑认知功能,专注于理解大脑小部分的动力学,并重现生物网络现象。自顶向下的方法(红色箭头)旨在首先捕获算法层面的认知功能。该方法忽略了生物实现,将信息处理底层任务性能分解为算法组件。这两种方法形成了通向共同目标的连续路径的两个极端,即解释我们的大脑如何产生我们的思想。总的来说,在认知保真度和生物保真度之间存在权衡(负相关)。然而,当认知约束阐明了生物功能,当生物学激发了解释认知的模型时,这种权衡可以转化为协同(正相关)。因为智能需要丰富的世界知识,人脑信息处理的模型参数复杂度会很高(右上角的大点)。即使从生物细节中抽象出来的模型可以解释任务表现,但仍需要生物细节模型来解释神经生物学的实现。这个图表是一个概念性的,它可以帮助我们理解模型之间的关系,并欣赏它们的互补贡献。然而,它不是基于认知保真度、生物保真度和模型复杂性的定量测量。测量这三个变量中的每一个的确定方法还有待开发。

      在本节中,我们关注任务执行模型最近的成功,这些模型从表征和算法的角度解释了认知功能。任务执行模型一直是心理物理学和认知科学的核心,传统上它们是用行为数据来测试的。一个新兴的方向也开始用大脑活动数据来测试任务执行模型。我们将依次考虑两大类模型:神经网络模型和认知模型。

神经网络模型

      神经网络模型有着悠久的历史,在多个学科中相互交织。在计算神经科学中,神经网络模型,在不同层次的生物细节,对理解生物神经网络的动力学和基本计算功能是必不可少的。在认知科学领域,他们在20世纪80年代定义了一种理解认知功能的新范式,称为并行分布式处理,这使该领域离神经科学更近了一步。在人工智能领域,最近在许多应用领域取得了重大进展,从感知任务(如视觉和语音识别)到符号处理挑战(如语言翻译),以及运动任务(包括语音合成和机器人控制)。神经网络模型为构建任务执行模型提供了一种通用语言,该模型满足三个学科成功的组合标准(图2)。

      “神经网络模型”一词与一类受生物神经网络启发的模型有关,每个单元结合许多输入,信息通过网络并行处理。与生物细节模型不同的是,这些模型可以捕捉到每个神经元多个区域的动作电位和动力学,而这些模型是从生物细节中抽象出来的。然而,它们可以解释某些认知功能,如视觉物体识别。典型的单元计算其输入的线性组合,并通过静态非线性传递结果。这种输出有时被解释为类似于神经元的放电速率。即使是浅层网络(那些在输入和输出之间有一层隐藏单元的网络)也可以近似任意函数。然而,深度网络(那些具有多个隐藏层的网络)可以更有效地捕获现实世界任务中需要的许多复杂功能。许多应用——例如在计算机视觉中——都使用前馈架构。然而,对单元输出进行再处理并产生复杂动态的循环神经网络带来了额外的进展,并更好地捕捉大脑中的循环信号。

       前馈网络是通用函数逼近器,而递归网络是动力系统的通用逼近器。循环处理使网络能够通过时间循环利用其有限的计算资源,从而执行更复杂的计算序列。循环网络可以以动态压缩格式表示最近的刺激历史,提供当前处理所需的时间上下文信息。因此,循环网络可以识别、预测和生成动态模式。前馈网络和递归网络都是由它们的结构和连接权的设置来定义的。设置权重的一种方法是通过迭代的小调整,使输出更接近期望的输出(监督学习)。

     神经网络模型已经证明,从生物学中获得灵感可以在人工智能方面取得突破。对能与人类认知能力相匹配的模型的探索很可能会吸引我们更深入地研究生物学。目前工程上最成功的抽象神经网络模型可以用生物硬件来实现。然而,它们只使用了大脑动态成分的一小部分。神经科学描述了一系列丰富的动态成分,包括:动作电位、典型的微电路、树突动力学和网络现象。生物学也提供了对全局架构的约束。在设计用于执行有意义任务的神经网络环境中对这些生物组件进行建模,可能会揭示它们如何促进大脑计算,并可能推动人工智能的进一步发展。

       像大脑一样,神经网络模型可以执行前馈和循环计算。驱动最近进展的模型是深层次的,因为它们包含了线性-非线性信号转换的多个阶段。模型通常有数百万个参数(连接权值),这些参数的设置是为了优化任务性能。一个成功的范例是监督学习,其中从输入(例如图像)和相关输出(例如类别标签)的训练集中学习所需的从输入到输出的映射。然而,神经网络模型也可以在没有监督的情况下进行训练,并可以学习其经验数据固有的复杂统计结构。

       最近的一些研究已经开始测试神经网络模型作为大脑信息处理的模型。这些研究通过训练识别图像中的对象的深度卷积神经网络模型预测了灵长类动物腹侧视觉流中新颖图像的大脑表征。结果表明,深度卷积神经网络的内部表征为人类和猴子颞下皮层视觉图像的表征提供了目前最好的模型。当比较大量的模型时,那些被优化以执行物体分类任务的模型能更好地解释皮质表征。

认知模型

      认知层面的模型使研究人员能够设想信息处理的过程,而不必同时用神经生物学上可信的成分来解决其执行问题。这使得在神经网络模型仍有不足之处的高级认知领域取得了进展。此外,认知模型可能提供有用的抽象,即使一个过程也可以用神经网络模型捕获。

       现在,神经科学的解释主要集中在靠近大脑外围的功能部件上,在那里,感觉和运动过程将动物与环境连接起来。然而,许多更高层次的认知仍然超出了神经科学和神经网络模型的范围。为了说明认知模型的一些独特贡献,我们简要地讨论了三类认知模型:产生系统、强化学习模型和贝叶斯认知模型。

       产生系统为一类可以解释推理和解决问题的认知模型。这些模型使用规则和逻辑,它们是符号的,因为它们在符号上操作,而不是在感觉数据和运动信号上操作。它们捕捉的是认知,而不是感知和运动控制,它们将认知置于物理环境中。

       强化学习模型捕捉了智能体如何通过与环境的互动来学习从而最大化其长期累积的回报。在产生系统中,强化学习模型通常假设代理具有感知和运动模块,能够使用状态和动作的离散符号表示。智能体选择行动,观察环境的结果状态,在这个过程中接受奖励,并学习改善自己的行为。代理可能会学习一个“价值函数”,将每个状态与其预期累积奖励联系起来。如果代理能够预测每个操作会导致哪个状态,并且知道这些状态的值,那么它就可以选择最有希望的操作。代理还可以学习一个“策略”,将每个状态与行动直接关联起来。行动选择必须平衡利用(能够带来短期奖励)和探索(能够帮助学习并带来长期奖励)。强化学习领域探索了定义如何行动和学习以便最大化累积奖励的算法。基于心理学和神经科学,强化学习理论现在是机器学习和人工智能的一个重要领域。

       一个代理可能会穷尽地探索一个环境,并通过试错(无模型控制)来学习在任何状态下最有希望采取的行动。这将需要足够的时间来学习。然而,生物有机体学习的时间有限,记忆也有限,因此必须避免可能杀死它们的相互作用。在这些条件下,代理可能会更好地构建其环境的模型。一个模型可以压缩和推广经验,使智能行动在新的情况下。无模型方法计算效率高(从状态映射到值或直接映射到动作),但统计效率低(学习需要很长时间);基于模型的方法在统计上更有效率,但可能需要大量的计算(来模拟可能的未来)。

        第三类,也是非常重要的认知模型是贝叶斯模型。贝叶斯推理为认知提供了一个基本的规范性视角。它告诉我们大脑应该计算出什么才能让动物的行为达到最佳状态。例如,知觉推理应该在先验信念的背景下考虑当前的感官数据。简单地说,贝叶斯推理就是将数据和先验信念按照概率的规则相结合。贝叶斯认知模型的动机是假设大脑接近统计上最优的解决方案。统计上最优的推断和决定怎么做的方法是根据所有可用的先验知识使用概率规则来解释当前的感官证据。以视觉感知为例。视网膜信号反映了世界上我们想要识别的物体。为了推断物体的形状,我们应该考虑我们认为可能的物体的形状,以及每种形状对图像的解释程度。我们的先验信念由生成模型来表示,该模型捕捉到每个物体配置的概率,以及给定配置产生不同视网膜图像的概率。

       贝叶斯模型有助于我们理解基本的感觉和运动过程。他们还为判断和决策的高级认知过程提供了见解,解释了经典认知偏差是先验假设的产物,这些假设在实验任务中可能是错误的,但在现实世界中是正确和有用的。通过贝叶斯非参数模型,认知科学已经开始解释更复杂的认知能力。考虑人类从一个例子中归纳出一个新的物体类别的能力。这种归纳推理需要现有前馈神经网络模型无法捕捉到的先验知识。要归纳一个范畴,我们必须理解对象,理解对象各部分之间的相互作用,理解它们如何产生对象的功能。根据贝叶斯认知理论,人类的大脑从婴儿期就开始构建世界的心智模型。这些模型可能不仅是概率意义上的生成模型,而且可能是因果和合成的,支持对世界过程的心理模拟,使用可以重新组合的元素,以推广到新的和假设的场景。这种建模方法已经被应用到我们对物理世界甚至是社交世界的推理中。

       生成模型是一般智力的重要组成部分。一个试图学习生成模型的主体努力理解其经验之间的所有关系。它不需要外部监督或强化来学习,但可以挖掘其所有经验,以洞察其环境和自身。特别是,世界过程的因果模型(物体如何导致图像,现在如何导致未来)可以给行动者更深刻的理解,从而为推断和行动提供更好的基础。

        神经元群体中概率分布的表示已经在理论和实验上进行了探索。然而,将贝叶斯推理和学习,尤其是非参数模型中的结构学习,与其在大脑中的实现联系起来仍然是一个挑战。认知模型,包括这里强调的三个类别,将认知分解为有意义的功能组件。通过宣称他们的模型独立于大脑的执行,认知科学家能够解决目前神经网络无法触及的高级认知过程。认知模型对于认知计算神经科学至关重要,因为在我们试图理解各个部分的角色时,它们能让我们看到整体。

4. 展望

自下而上和自上而下

       大脑在感知推理中无缝地融合了自下而上的判别和自上而下的生成计算,以及无模型和基于模型的控制。脑科学同样需要整合其描述层次,自下而上和自上而下的发展,以便在神经元动力学的基础上解释任务表现,并提供大脑如何产生思维的机制解释。

      自下而上的愿景,从详细的测量到对大脑计算的理解,推动了最近最重要的资助计划。欧洲人脑计划(European Human Brain Project)和美国大脑计划(US Brain Initiative)都是由自下而上的视角推动的,即通过测量和建模大脑动力学来理解大脑计算,重点关注回路层面。“大脑计划”寻求推进测量和操纵神经元活动的技术。人脑计划试图将神经科学数据合成到生物学上详细的动态模型中。这两项举措主要从实验走向理论,从细胞层面的描述走向更大规模的现象。

       同时测量大量的神经元,并在回路层面模拟它们的相互作用将是至关重要的。这种自下而上的观点植根于科学史。例如,显微镜和望远镜带来了科学上的突破。然而,只有在先验理论(观察过程的生成模型)的背景下,更好的观察才能促进我们的理解。例如,在天文学上,哥白尼的理论指导伽利略解释他的望远镜观测。

       理解大脑需要我们同时发展理论和实验,并通过自上而下的理论驱动方法来补充自下而上的、数据驱动的方法,这种方法从需要解释的行为功能开始。前所未有的丰富的大脑活动测量和操作将推动理论洞察力。因此,自上而下的方法是理解大脑的自下而上方法的重要补充(图3)。

整合Marr的水平

      Marr(1982)提出了三个层次的分析(i)计算理论,(ii)表征和算法,以及(iii)神经生物学实现。认知科学从计算理论开始,将认知分解为组件,自上而下发展表征和算法。计算神经科学从下至上,将神经元组合成表征和算法,被认为是大脑整体功能中有用的组成部分。人工智能构建表征和算法,将简单的组件组合起来实现复杂的智能壮举。因此,这三种学科都汇聚在大脑和思想的算法和表征上,形成了互补的约束。

      Marr的水平为理解大脑的挑战提供了一个有用的指南。然而,它们不应该被认为是认知科学不需要考虑大脑,或者计算神经科学不需要考虑认知。认知科学需要计算神经科学,不仅要解释认知模型在大脑中的实现,而且要发现算法。计算神经科学需要认知科学来挑战它,以参与更高层次的认知。计算神经科学需要人工智能,特别是机器学习,以提供理论和技术基础,以模拟具有生物学上可信的动态组件的认知功能。人工智能需要认知科学来指导智能工程认知科学的任务可以作为人工智能系统的基准,从基本的认知能力到人工通用智能。人工智能需要计算神经科学来获得算法灵感。神经网络模型是一个以大脑为灵感的技术,在人工智能的几个领域是无与伦比的。

       举一个超越学科的挑战的例子,想象一个孩子第一次看到自动扶梯。她会很快认出那些在台阶上斜向上走的人。她可能会把它想象成一个移动的楼梯,想象自己骑在上面,不用费力就被抬上一层楼。在学习“自动扶梯”这个词之前,她可能会推断出它的功能,并根据单一的经验形成一个新的概念。

       贝叶斯非参数模型解释了如何从单一经验进行深度推断和概念形成。他们也许可以解释大脑惊人的统计效率,它能够通过建立提供抽象先验知识的生成模型,从如此少的数据中推断出如此多的信息。然而,目前的推理算法需要大量的计算,因此,还不能适应现实世界的挑战,比如从单一的视觉体验形成“自动扶梯”的新概念。

      然而,最近在人工智能和机器学习方面的工作已经开始探索贝叶斯推理和神经网络模型之间的交集,将前者的统计优势(不确定性表示、概率推理、统计效率)与后者的计算优势(表征学习、通用函数逼近、计算效率)结合起来。

      整合Marr的所有三个层次将需要拥有各种专业知识的研究人员之间的密切合作。任何一个单独的实验室都很难在神经科学、认知科学和人工智能规模的计算建模方面表现出色。因此,我们需要专业知识互补的实验室之间的合作。除了传统的合作之外,一个开放的科学文化(其中的组成部分在各学科之间共享)可以帮助我们整合Marr的水平。可共享的组件包括认知任务、大脑和行为数据、计算模型,以及通过将模型与生物系统进行比较来评估模型的测试。新的合作文化将通过组合来自不同实验室的组件来组合大数据和大模型。

      实验室和学科之间的相互作用可以从对抗性合作中受益。认知研究人员认为,当前的计算模型无法解释认知的一个重要方面,他们面临着设计可共享的任务和测试的挑战,以量化这些缺点,并提供人类行为数据,为人工智能模型设定标准。认为目前的模型不能解释大脑信息处理的神经科学家面临挑战,他们需要分享在任务执行过程中获得的大脑活动数据,并通过比较大脑和模型之间的活动模式来量化模型的缺陷。尽管我们将有多种成功的定义,但将这些转化为模型质量的量化衡量是必不可少的,并且可以推动认知计算神经科学和工程学的进步。

 可共享组件之间的交互。任务,数据,模型和测试是组件(灰色节点),它们有助于在实验室和跨学科之间共享。

总结:

       对思维和大脑的研究正进入一个特别令人兴奋的阶段。计算机硬件和软件的最新进展使人工智能规模的思维和大脑建模成为可能。如果认知科学、计算神经科学和人工智能能够结合在一起,我们或许能够用神经生物学上可信的计算模型来解释人类认知。

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值