PNAS:癫痫发作过程中有效连接网络的时变可控性

      据估计,美国300万癫痫患者中有三分之一以上有药物耐药性。慢性植入电极的反应性神经刺激提供了一个有希望的治疗替代切除手术。然而,确定最佳的个性化刺激参数,包括何时何地进行干预以确保患者获得积极的结果,是一个主要的开放挑战。网络神经科学和控制理论为异常神经活动控制的参数选择提供了有用的工具。在这里,我们使用了一种方法来描述连续有效连接(EC)网络的动态可控性,该方法基于34例癫痫发作、传播和终止过程中植入电极之间正则化的部分相关性。我们使用图形最小绝对收缩和选择算子(GLASSO)从颅内皮质脑电图记录的1s时间窗估计正则化的部分相关邻接矩阵。从每个产生的EC(有效连接)网络计算出的平均值和模态可控性指标,在有条件依赖的网络交互的不断演变的格局中跟踪大脑的时变可控性。本研究表明,平均可控性在整个发作过程中增加,并与整个模态可控性负相关。研究结果支持了这样一个假设,即在癫痫发作期间,将大脑从发作状态驱动到无发作状态所需的能量是最小的,但我们发现,将控制能量应用于癫痫发作区电极可能并不总是有利的。本研究表明,一个低复杂度的时间演变可控性模型可能为开发和改进针对癫痫抑制的控制策略提供见解。本文发表在PNAS杂志。

1. 介绍

     反应性神经刺激(RNS)是一种治疗耐药性癫痫的非切除性治疗方法,其目的是通过颅内电极对异常电活动进行电刺激来抑制癫痫发作。尽管第一个可植入的RNS装置在2013年获得批准,但其作用机制和最佳的患者特异性刺激设置仍然未知。通过将大脑建模为一个网络,用不同的大脑区域代表节点,用统计依赖关系代表区域之间的影响作为边缘,寻找抑制癫痫发作的最佳策略的挑战可以被重新定义为网络控制问题。

     来自先前经验和计算研究的证据表明,线性网络控制框架可以用来预测神经活动将如何对外部刺激作出反应,其中的动力学受到静态的、结构化的大脑网络的约束,该网络建立于大规模皮层和皮层下解剖区域之间的白质束连接模式。该理论还提供了驱动大脑状态所需的最佳刺激参数的预测,网络中每个大脑区域的活动的时间依赖性测量,从初始状态到期望的目标状态。针对改善记忆的直接电刺激,这些预测已被量化,但由于两个主要原因,用于控制癫痫发作的刺激尚未被定义或测试。首先,癫痫发作的特点是快速的状态转换,这违反了整个发作过程的线性假设。第二,从理论上观察到,信息在大脑中的传播可能依赖于大脑区域之间的内在一致性状态,而对大脑区域的外源输入可能会使信息流动的方向发生偏差。根据这些数据,很明显,用静态白质网络提供可控性的线性估计无法捕捉到大脑皮层对网络一致性变化模式的动态影响。

      许多非线性模型真实地描述了发作进展和刺激的复杂性。线性控制框架可以在短时间内近似这种模型,并可以为全网络控制提供更多的可访问工具。因此,我们在线性控制框架的扩展中解决了上述限制;我们不再假设一个单一的结构连接网络控制大脑状态之间的转换,而是根据颅内脑电图(iEEG)癫痫发作记录来估计有效连接(EC)网络序列,以捕捉癫痫发作过程中神经动力学的进化约束。我们的网络结构是这样的,节点代表iEEG电极,边缘代表脑电图时间序列衍生的EC测量值。与仅描述网络节点之间活动如何相关的功能连接度量不同,EC意味着网络节点之间的潜在因果关系。数据驱动方法包括格兰杰因果关系、定向传递函数和部分定向相干已被用于创建EC脑网络。在本文中,考虑到所有其他节点的活动,EC描述了网络中节点的无向条件依赖性,因此是理解外部刺激对癫痫发作动力学影响的一个强有力的方法(图1)。我们的模型支持这样的假设:结构连接仅部分决定了我们通过外部刺激控制快速进化的神经过程的能力,大脑区域之间的短暂耦合也影响神经可控性。

图1 随时间变化的EC作为癫痫控制策略的工具。

(A)在三个节点上有两个经验功能连接的网络中,相关功能连接可能会估计间接交互的节点之间的伪边。相反,EC反映了网络中节点之间的直接影响。在整个癫痫发作过程中,我们可以构建EC网络来表示不同的神经连接机制(B),并从这些网络推断出动态控制能量图景,显示在系统状态空间的主轴上(C)。然后,我们可以使用控制理论中的工具来确定所需的最优控制输入,以驱动神经活动癫痫自由给定的状态控制能量分布。

      我们利用我们的模型建立在先前的网络控制理论工作的基础上,以解决关于人类癫痫发作动力学的几个具体假设。我们将重点放在两种可控性的测量方法上,这两种方法描述了随着时间的发展,大脑进入新状态的容易程度平均可控性反映了一个节点将活动从某种初始大脑状态转移到所有附近状态所需的平均输入能量。模态可控性反映了将一个系统移动到由小本征模主导的状态的容易程度,这些本征模直观上很难达到,因为它们对系统动力学的贡献较小,而且远离主导能量最小值。具体来说,该度量量化了给定节点上的输入在多大程度上控制了系统所有本征模态的活动,并向较小的模态加权,从而总结了底层网络将如何对控制输入作出响应。模态可控性可以与持久模态可控性和瞬态模控性的度量相分离,描述了在节点上控制输入的程度,分别影响系统的慢速或快速衰减模式。总的来说,这些指标允许对系统的可访问控制策略进行广泛的评估。我们推测,癫痫发作的传播将伴随着较高的平均可控性和受限制的模控性,在癫痫发作时对价值的影响。我们通过使用与癫痫发作状态相关的线性控制模型来扩展这一评估,以找到从控制节点子集驱动大脑到无癫痫发作状态所需的最优控制函数。

2. 方法

      本研究使用的ECoG数据来自于14例植入硬膜下电极的癫痫患者。对于每一个癫痫事件,从发作和发作前数据的1s时间窗构建EC网络。预处理后的数据被分割为1s的连续时间窗口,时间跨度为癫痫发作和前期。对于每个窗口,使用GLASSO方法找到正则化的偏相关EC矩阵。偏相关矩阵描述了网络中节点之间的所有两两偏相关,是逆协方差矩阵Σ−1的标准化形式。因此,部分相关性可以模拟节点之间独特的相互作用,并可以表明网络中的因果联系,但是ECoG记录通道的数量小于一个时间窗口中的样本数量,这意味着逆协方差矩阵不能直接计算,而必须进行估计。正则化逆协方差估计的图形最小绝对收缩和选择算子(GLASSO)方法因其高效和简单而得到广泛应用,也是我们在工作中采用的方法。该方法使用高斯图形建模方法,从一组假设具有平均µ和协方差Σ的高斯分布的变量中计算正则化的逆协方差估计。

       文章采用了一种数据驱动的检测方法来确定三组有效的连接网络,利用不同EC网络的所有两两组合之间的Pearson相关系数计算一次发作的相似性矩阵;每个元素由相邻参数β=0.01线性加权,这样在两个时间点远的网络加权小于在相邻时间点的网络加权。利用MATLAB软件,利用Louvain算法,根据网络相似度矩阵将网络分配给各群落。发现的群落数量可以通过缩放参数γ调整。对于每个EC网络,使用产生三个群落的γ值运行Louvain算法100次,并从100个试验分区中选择一个共识分区。总平均、模态、持续模态和瞬态模态可控性指标在MATLAB中使用自定义脚本和代码计算。在计算给定的可控度规之前,每个函数首先通过强制Schur稳定性来确保网络的稳定,然后减去单位矩阵来归一化特征值。在MATLAB中利用函数计算出最优控制能量

       方法部分的具体公式和算法可以参见文章的补充文件中的讲解部分,总而言之,首先使用GLASSO方法计算分段后的正则化的偏相关EC矩阵,采用数据驱动的方式来对所有的矩阵进行分类从而得到三类网络对应癫痫发作的三个主要状态,随后根据可控性指标的算法来计算三类网络的总平均、模态、持续模态和瞬态模态可控性指标,最后根据最优控制能量相关理论计算最优控制能量(3.3有相关讲解)。

3. 结果

3.1 描述状态转变

       先前对利用ECoG数据建立的功能连接网络的研究表明,癫痫发作可以分为三种主要状态——发作、传播和终止,并且考虑到时间序列的平稳性,线性建模在每个状态的1 s时间窗口内是适用的。我们试图确定在EC网络中是否存在这样的状态分离;如果是这样的话,动态可控性在癫痫发作机制中就可以有意义地进行比较。我们首先从14名接受耐药性癫痫手术治疗前的被试的脑电图监测到的34例局部或继发性癫痫发作中和发作前的连续1s时间窗ECoG记录来构建脑电图网络。EC网络使用图形最小绝对收缩和选择算子(GLASSO)方法来估计每个时间窗口中记录的时间序列对之间的正则化偏相关。对于每一个用可变N个通道记录的可变长度T秒的捕获,该程序提供了总共T个大小为N × N的正则化偏相关矩阵(见图2a和B)。

图2 通过EC计算时间演变的可控性。

(A)对于每次发作,我们从N个电极通道提取连续1 s的ECoG时间窗。

(B)根据这些数据,我们估计了T个EC网络。

(C)基于正则化偏相关邻接矩阵的相似性,我们使用全体检测来确定三个发作状态,并选择一个单一的EC网络来表示每个状态,用于我们的最优控制分析。

(D)在所有34次捕获中发现的三种最大状态的分布情况。状态按时间顺序排列,并由其标准化的时间中位数与最长连续运行的时间窗口绘制。

      为了便于分析,我们接下来使用回顾性检测方法来检测癫痫发作机制;实时状态分类仍然是一个有趣的挑战,但是超出了本研究的范围。我们计算了之前被称为功能连接动力学矩阵或配置相似性矩阵的东西。这个T × T相似度矩阵包含了ij个元素,表示第i个和第j个EC网络的上三角形之间的Pearson相关系数。此外,条目的权重为常数β乘以时间点之间的持续时间,以促进状态连续性。使用一种类似Louvain的局部团体检测算法来最大化模块化质量函数,我们将相似矩阵的列进行划分,从而将每次发作分为三个以EC的可区分模式为特征的时间区域(图2C)。每个群体中最大的时间连续网络分配被选择用于后续分析,并相对于集群的中位时间点按时间顺序标记为发作状态1至3(图2D)。平均而言,96±5%的EC网络被分配到三个相邻区域中的一个,相比之下,只有30±12%的网络被分配到一个相同长度的前区域,在此期间,不同的区域是不可能的(补充图S2)。因此,我们发现,我们的数据驱动方法可以用于划分癫痫发作的开始、扩展和终止机制。

 补充图S2 网络集群的预检测和度量计算。我们最大化了一个加权矩阵的模块性,该矩阵编码了发作时所有的有效连接网络(n = 34)之间的相似性。这个过程产生了对三个集群之一的每个初始时间窗的分配。我们通过找到最长时间连续集群分配的中位数(左上),按时间顺序将每个集群标记为1至3号区域。集群分类在任何可控性指标上都没有发现显著影响。

3.2 癫痫网络的动态可控性

      我们现在转向研究EC网络如何代表每个状态转换影响状态依赖的可控性。在我们的模型中,分析模态可控性指标的平均可以回答这个问题,能量输入在一个给定的状态是否会以扩散传播在整个网络推动大脑状态到其他附近的状态(高平均可控制性),或者是否能够驱动控制输入大脑状态,很难达到维护影响系统的小型模式(模态可控性高)。对持续模态和瞬态模态可控性指标的附加分析可以描述输入大脑网络的能量在多大程度上是在控制缓慢衰减模态时持续的,或者在控制快速衰减模态时衰减的。我们调查每个状态转换的指标,假设转换的进展是自然的(没有事先的刺激),直到状态转换到感兴趣的状态。

      对于所有四个可控性指标,我们在组水平观察到一个显著的状态依赖。我们为每一次转换获得了12个度量值——4个单值来总结3种情况下的总平均、模态、持续模态和瞬态模态可控性度量——然后比较了34次转换中每个状态下的值。在一个区域内,为分配给该区域的每个EC网络中的每个节点计算一个给定的度量。然后通过网络获取每个节点的中值,并将得到的N × 1向量的平均值用于总结状态。通过14例癫痫患者的34次癫痫发作,采用弗里德曼方差分析(Friedman’s ANOVA),观察癫痫发作模式对癫痫发作的平均可控性、模式可控性、瞬态模式可控性和持续模式可控性是否有显著影响。在Bonferroni校正后,对每个度量内的发作状态进行多次比较,我们发现从传播到终止状态的平均可控性显著增加,而从发作到终止状态的模态可控性则稳步显著降低。瞬时和持续模态可控性的值从开始到传播都显著增加,从传播到终止都再次下降,尽管瞬态可控性的降低没有达到统计学意义(图3)。我们的结果表明,输入能量在整个网络中的传播范围将随着癫痫发作的演变而增加,并且在癫痫发作时,将活动导向难以到达的大脑状态的难度最大。

图3 群体水平的可控性动力学贯穿于癫痫发作的早期,中期和晚期。平均可控性表明将网络活动驱动到邻近状态的容易程度,并发现在整个癫痫发作期间增加。模式可控性表明,癫痫发作过程中,神经网络活动易于向难以到达或距离较远的状态转移,且呈下降趋势。瞬态和持续模态可控性描述了扰动系统的慢模态、维持模态或快模态、衰减模态的容易程度。

3.3 与状态相关的最优控制能量

      用于理解大脑网络状态不变可控性的线性动力学模型也可以揭示驱动大脑从初始状态x0到最终状态xτ / τ时间步长的最佳控制能量。最优控制能量努力将输入能量最小化,同时确保从初始状态到最终状态的直接轨迹,从而避免了受控癫痫发作可能在好转之前变得更糟的情况。在验证了EC模式能够充分模拟大脑状态演化后,我们使用最优控制框架来确定在癫痫发作期间,从每个发作模式驱动大脑状态到无发作基线的最优解。鉴于目前RNS治疗实践的成功,即在检测到癫痫发作后立即注入电流,我们假设控制能量在癫痫发作状态下是最小的,癫痫发作通常是一个空间受限的时期。

      首先,我们为每个发作中每个发作状态获得一个具有代表性的EC网络,作为在给定的发作状态中与其他网络平均相似性最高的网络。每次发作,我们计算平均每个电极在1 s时间窗口内所有时间窗口内的高γ波段功率,为三种发作模式量化N × 1初始脑状态向量x0。我们量化了一个最终的、无癫痫发作的大脑状态xτ,方法是在与癫痫发作持续时间相等的前一段时间内,以类似的方式平均各窗口的频带功率。然后,我们测量每个节点将需要多少输入能量来驱动大脑从三个初始状态,到前期记录的基线大脑活动水平。最后,在特定状态下,对所有节点的最优控制能量值进行平均,得到每个发作和状态的三个最优控制值。然后根据转换情况对这些值进行分组(图4A)。再次进行Friedman方差分析,发现癫痫发作模式对最优控制能量有显著影响。具体而言,在组水平上,癫痫发作阶段的控制能量需求显著低于传播阶段,而终止阶段的控制能量需求则显著低于传播阶段。

图4 依赖状态的最优控制能量。

(A)在组水平上,最佳控制能对癫痫发作模式有显著影响;与传播相比,开始阶段的能量值显著降低。

(B)从癫痫状态到基线的轨迹通过皮质网格上标记为蓝色的SOZ(seizure onset zone)节点控制,用于受试者HUP68在τ控制时间步骤上的癫痫发作。(左)主体HUP68跨τ控制时间步进到SOZ节点集的总输入能量。(右)t时刻网络状态到最终目标网络状态xτ沿控制轨迹的欧氏距离。

(C) HUP68受试者的单次发作在3种状态下显示出最佳能量值,其中SOZ能量显著低于发病状态下的零分布。

3.4 起始阶段的控制定位

       最优控制能量结果表明,癫痫发作过程是首选的低能量需求。为了找到最佳的控制位置,我们接着问,考虑到RNS处理通常局限于SOZ,控制SOZ上的节点是否比控制任何其他节点子集所需的能量更少。除4名受试者外,所有受试者的癫痫发作均表现为局灶性发作,在本分析中,共有22例癫痫发作局限于皮层网格电极区域。我们再次测量了驱动大脑状态沿着最佳轨迹从每个发作状态的初始状态x0到最终状态xτ所需的控制能量。但是,这一次,控制输入同时提供给每个SOZ节点。然后,我们对非SOZ电极中的SOZ标签进行了5000次随机重新分配,以重复模拟实验。我们发现,只有一半的受试者显示出可定位的SOZ,使用SOZ节点的控制比使用其他节点子集的控制在发作状态下所需的能量要少得多(图4B和补充图S9)。我们观察到SOZ显著性与SOZ节点数之间没有相关性,这表明我们的结果不是简单地由于SOZ大小的差异造成的。癫痫发作的年龄、发生癫痫的年数和癫痫发作次数等因素在组间也无显著差异。作为一个例子,我们展示了在受试者HUP68的8×8电极栅极阵列中控制能量的空间分布,在癫痫发作期间SOZ能量显著降低(图4C)。非SOZ节点的能量计算为它们参与的所有排列试验的平均能量。这些结果表明,动态可控性分析可以回答有关癫痫抑制刺激的时空问题。

 补充图S9 以SOZ节点为控制集的最优控制能量。我们测量了驱动大脑状态从给定的癫痫发作状态x0到由同时控制所有SOZ点产生的最终无癫痫发作状态xτ所需的总能量。然后,我们对非SOZ电极中SOZ标签的5000个排列重复这个测量。我们发现,在一半的局域性癫痫患者中,使用SOZ节点控制发作所需的能量明显少于使用其他节点子集控制发作。

3.5 结果对选定参数的鲁棒性

       我们的分析依赖于大量的假设,以及EC网络生成和区域描述的参数化方法,以及参数化的最优控制能量模型。我们试图通过评估我们的结果对我们的假设和参数值的敏感性来评估我们发现的可靠性。首先,考虑到从同一SOZ传播的癫痫发作的时空模式在一个受试者中可能是不同的,我们选择将每次癫痫发作视为一个独立的数据点。在对受试者的癫痫发作进行分组后,我们完成了另一项分析,发现我们的主要发现的组水平趋势得到了保留,尽管数据点的数量减少了,但不同状态之间的持续和短暂模态可控性保持了显著差异(补充图S3)。我们还改变了稀疏性调谐超参数λ,用于EC估计(补充图S5),并在确定状态时调整了总体分配的时间连续性(补充图S6)。在这些分析中,我们发现在改变我们主要结果中使用的参数值附近的每个参数后,任何度量的可控性值没有显著变化。最后,我们使用三个额外的时间视界(τ)和距离-能量权衡(α)参数再现了我们的群级最优控制能量结果。我们发现,当τ值减小时,最优控制估计误差增加,但群水平趋势保持不变(补充图S8)。综合来看,我们发现我们的主要结果对合理的参数变化是稳健的。

 补充图S3 流程化分组后的组级制度度量。在对我们的主要组水平结果的替代分析中,我们没有将每一次癫痫发作视为一个独立的数据点,而是将源自同一发病区域的癫痫发作之间的平均度量值视为单个数据点。

补充图S5 EC网络稀疏度的变化。在估计正则化偏相关矩阵时,参数λ控制假正容差。图中显示了整个捕获期间EC网络的平均密度和正则化参数ρ的平均值。每一行表示稳健性数据集中的一次发作(n = 14);

下面一行:随着EC网络稀疏度的增加,每一次发作的平均可控性值。

补充图S6 对区域连续参数β的敏感性。

(A) T随β增加的时序分配。在这里,我们展示了“Study038”患者癫痫发作样本的发作前和发作期时间窗的状态分配。在β=0.01的加权值下,三种发作模式在发作前时间上是连续的,而在发作前时间上则是交错的。

(B)时间连续区域分配的时间窗口数,由同一区域分配的总时间窗口数归一化,作为爆发前和爆发期β的函数。大于0.5的比值表明一个区域的大部分时间窗口被分配给一个单一的时间集群。

(C)区域1网络平均可控性值随β增加的变化。每一行表示稳健性数据集中的一个患者。β=0和β=0.01的发作期平均控制值之间差异不显著。

 

补充图S8 所有转换和状态的最大误差百分比。我们使用误差大小来指导我们的参数选择,以计算最优控制能量。我们发现,对于所有癫痫发作的每个发作状态,节点间平均的最小误差发生在τ∈[0.01,3.00]和α∈[0.01,100]的附近。

左:我们在每个参数区间内选择10个值,量化每个参数组合在给定的抓取状态下产生的误差百分比。

右:组级能量分析的结果显示在左图所示的三个参数组合。在所有测试点中,没有表现出从开始到传播的显著变化的参数组合也与最大的计算误差有关。

讨论

       对于耐药癫痫患者,RNS作为一种抑制癫痫发作的方法是一种相对较新的选择,它提供了一种替代更永久和侵入性的选择。虽然大多数患者在经过数月到数年的治疗后病情有所好转,但目前选择刺激参数的试错程序还远远不够理想。我们完成这项研究是为了引入一个动态可控性的控制理论框架,该框架可以为临床治疗决策提供支持,并突出需要最少输入的刺激区域和时间点。

4.1 准静态状态转换的出现

      在对静态大脑可控性观点的挑战中,许多研究发现,皮质-皮质耦合的多种模式可能出现在同一个结构基础上,而时间变化的脑电网络可能提供更准确的连接景观视图。通过估计脑区之间正则化的部分相关性,我们努力去除皮层下结构的共同潜在输入的贡献,只描述皮质皮层的直接影响。使用该框架作为每个发作状态中区域间依赖性的线性近似,我们证明了静态结构模型的优越性,并揭示了在给定状态下,输入能量分布在大脑各区域的可控性动态剖面。我们的结果表明,在大多数癫痫发作中,平均可控性增加而模式可控性降低。发病时的平均可控性较低,意味着在发作开始时,输入能量的广泛、扩散分布受到阻碍,这与功能连接方面的发现互补,这些发现表明,由于抑制的丧失,发作时大脑区域之间的明显解耦。在随后的传播过程中,大脑区域之间的耦合已经显示出增加,并进入终止状态,我们的结果表明,将大脑引导到能量不利的状态(低模态可控性)将变得更加困难。

4.2 时空控制作为RNS干预的工具

       从临床RNS治疗的角度来看,我们的模型支持当前在癫痫发作时进行干预的做法,组水平的结果表明,发作时过渡到无发作状态所需的控制能量最小。我们注意到,传播和终止机制的能量需求增加可能是由于我们试图通过完全控制大脑状态沿着癫痫发作自由的直接轨迹,以能量为代价来对抗自然发作进程。我们分析了SOZ和非SOZ节点之间的局部微分最优控制能量,发现只有一半的受试者在SOZ中抑制癫痫发作所需的能量明显更少。这一发现并不支持SOZ作为普遍的能量有利刺激靶点,并回避了SOZ以外的能量有利点是否仍然可以作为临床相关刺激靶点的问题。导致这一结果的原因和因素有很多。此外,在切除手术中,仅去除SOZ(seizure onset zone通常是不够的,这表明更广泛的致痫区域内的其他大脑区域帮助癫痫发作。这些事实结合证据表明,癫痫前驱体可能出现在SOZ之外,SOZ的组织损伤可能对其他大脑区域的功能产生远程影响,刺激位置在SOZ附近对患者的预后并不总是显著的,这表明我们的模型选择的能量有利控制点即使在SOZ之外也可能仍然有效。

4.3 方法的局限性

       我们的动态可控性模型有一些局限性。首先,我们选择用高γ波段功率来操作大脑状态。虽然这种测量方法在癫痫文献中常用,但它不能完美地捕捉大脑活动的其他相关特征,包括功率谱密度的斜率、LFP的非正弦特征等。此外,我们的模型只使用了一个没有癫痫发作的大脑状态,而在现实中,它可以用许多状态向量来表示。其次,我们的模型假设在每个时间窗口内无噪声、线性网络动力学,并假设在给定的癫痫发作期间,皮质对大脑状态演化的影响将在最优控制的时间范围内保持平稳。虽然大脑是非线性的,刺激后EC网络的动力学可能会偏离其状态配置,但短时间内的线性近似可以捕捉癫痫的广泛动力学,同时允许线性控制理论的应用和易于解释。将这项工作扩展到非线性控制理论的模型,可以类似地研究将大脑控制到无癫痫的方向的方法,而不是单一的状态,并将补充这里产生的假设。最后,虽然在癫痫监测单元中偶尔使用刺激来诱发然后抑制癫痫发作,但这种情况很少发生,而且我们的数据集不包含刺激的实例。接下来的步骤将包括测试我们提出的方法的有效性,该方法使用的数据应该包含了跨越所有突发区域的刺激事件。

     总之,我们采用了一种测量有效网络的可控性和最优癫痫控制能量在三个时间发作阶段的方法。我们的结果为未来的实证验证提供了建立理论知情假设的初步工作。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值