核医学放射组学介绍

放射组学是一个快速发展的研究领域,主要关注从医学图像中提取定量指标—即所谓的放射组学特征。放射组学特征捕捉组织和病变特征,如异质性和形状,并且可以单独或与人口统计学、组织学、基因组学或蛋白质组学数据结合使用,来解决临床问题。本文的目标是向读者介绍这个领域,包括基本的放射组学工作流程:特征计算和选择、降维以及数据处理。文章将讨论核医学中的潜在临床应用,包括基于PET放射组学的治疗反应和生存预测。同时,也将介绍放射组学的当前限制,如对采集参数变化的敏感性,以及常见的陷阱。本文发表在The Journal of Nuclear Medicine (JNM)杂志。

关键词:放射组学;人工智能;机器学习;正电子发射断层扫描;单光子发射计算机断层成像

放射组学是核医学和医学影像学中被广泛讨论的话题。虽然这个术语并没有严格的定义,但放射组学通常旨在从诊断图像中提取定量的,理想情况下是可复制的信息,包括人眼难以识别或量化的复杂模式(1,2)。在几种情况下,从PET和SPECT等代谢成像技术中提取的放射组学特征可能是有用的。

首先,放射组学可以用来捕捉组织和病变的属性,如形状和异质性,并在连续成像中观察这些属性随时间的变化,例如在治疗或监测期间。在肿瘤学中,对组织异质性的评估尤其引人关注:基因组分析已经证明,肿瘤的异质性程度是生存预后的决定因素,也是控制癌症的难题(3–6)。研究表明,放射组学特征与细胞水平的异质性指数有强烈的相关性(7,8)。虽然活检只能捕获肿瘤的一小部分,并且通常只在一个解剖部位进行,但放射组学可以捕获整个肿瘤体积的异质性。因此,不足为奇的是,放射组学特征也与肿瘤的侵袭性相关(9)。放射组学特征也被建议用来预测临床终点,如生存和治疗反应,以及与基因组、转录组或蛋白质组特性的直接关联(1,2,9)。尽管单个的放射组学特征可能与基因组数据或临床结果相关,但当使用机器学习技术处理放射组学提供的丰富信息—通常是数百种特征,其中一部分将会贡献到特定疾病的放射组学特征标签—时,放射组学的影响将会增大(10,11)。

其次,放射组学数据是可挖掘的,这意味着在足够大的数据集中,它们可用于发现以前未知的疾病进展、进展和治疗反应的标记和模式。这种所谓的人群成像方法(12)要么使用来自不同模式(例如,PET、CT和MRI)的非结构化数据,这些数据是为广义群体中特定但可能无关的诊断目的而获取的,要么使用—如在德国国家MRI队列研究中—在大型队列中对单一成像测试进行多中心纵向观察研究(13)。这样的放射组学数据可以使用无监督的机器学习与临床、实验室、组织学、基因组或其他数据进行结合。

由于医生和计算机科学家之间的通信缺乏—特别是缺乏共同语言—是放射组学研究的一个主要障碍,因此本文旨在向医生介绍技术性的放射组学术语。我们选择不包括数学方程,而是使用单词和插图来突出关键概念。和任何其他技术一样,放射组学也有技术限制—包括对图像采集和重建参数的敏感性—和陷阱,这些也将被讨论。最后,我们将讨论核医学中当前放射组学应用的一些例子。

放射组学特征类别

了解不同类型的放射组学特征对于阅读放射组学研究论文甚至进行放射组学研究并非强制性要求。然而,熟悉核心原理可能有助于结果解释和为特定应用预先选择特征。以下概述仅包括最常见的放射组学特征类别。对于更完整的放射组学特征列表和基本方程式,我们推荐最近发表的《图像生物标志物标准化倡议》白皮书(14)。

放射组学特征可以大致分为:统计学特征(包括基于直方图和纹理的)、模型基础特征、变换基础特征和形状基础特征(15)。尽管放射组学特征可以从二维(2D)感兴趣区域(ROI)或三维(3D)感兴趣体积中提取,但我们选择ROI作为一个总称,以提高可读性。此外,统计学特征可以针对未修改或离散化的灰度级强度进行计算。本文不涵盖灰度级离散化(将灰度级范围缩减为预定义数量以提高稳健性和可重复性)或特征值聚合(用于在不同变化中计算相同特征时获取单个值,最简单的形式是算术平均值),因为这超出了本文的范围。

直方图特征

最简单的统计描述符基于全局灰度级直方图,包括灰度级均值、最大值、最小值、方差和百分位数(14,15)。由于这些特征基于单像素或单体素分析,它们被称为一阶特征。在PET中,常用的SUVmax、SUVmean和SUVpeak属于这一类别。更复杂的特征包括偏度和峰度,它们描述了数据的强度分布形状:偏度反映了数据分布曲线相对于均值的左侧(负偏态,低于均值)或右侧(正偏态,高于均值)的不对称性,而峰度反映了由于离群值而相对于高斯分布的数据分布的尾部厚度。其他特征包括直方图熵和均匀性(也称为能量)。值得注意的是,这些特征与同名的共生矩阵特征不同。

纹理特征

绝对梯度

对真正的放射组学纹理描述而言,一种简单的方法是分析绝对梯度,它反映了图像中灰度级强度波动的程度或突然性。对于两个相邻的像素或体素,如果一个是黑色而另一个是白色,则梯度最高,而如果两个像素都是黑色(或都是白色),该位置的梯度为零。灰度级从黑到白增加(正梯度)还是从白到黑减少(负梯度)对于梯度幅度是无关紧要的。与直方图特征类似,梯度特征包括梯度均值、方差、偏度和峰度(图1)(14,15)。

图1 放射组学特征的可视化呈现:左下肺部部分坏死肺癌的18F-FDG PET和增强CT图像。

通过在PET图像上移动小矩形窗口并计算每个位置的特征值生成放射组学特征图,反映肿瘤中葡萄糖代谢异质性的不同方面。每个特征图显示一个单独的放射组学特征,高值对应于灰度特征图上的高信号强度。彩色编码的特征图可以用于更好地可视化,并作为CT图像的彩色叠加层。CE 表示增强,HH 表示高-高,即在两个方向上进行高通滤波。

灰度共生矩阵(GLCM)

灰度共生矩阵(GLCM)最早由Haralick等人(16)描述,是一种二阶灰度级直方图。GLCM捕捉具有预定义灰度级强度的像素或体素对之间的空间关系,可以在不同方向(水平、垂直或对角线用于二维分析,13个方向用于三维分析)以及像素或体素之间的预定义距离上进行计算(图2)。GLCM特征包括熵(图2),它是灰度级不均匀性或随机性的度量;角二阶矩(也称为均匀性或能量),它反映了灰度级的均匀性或有序性;以及对比度,它强调了属于像素或体素对的像素或体素之间的灰度差异(14-16)。

图2 计算放射组学纹理特征。

GLCM依赖于像素对的计算(这里,像素间距为0),GLRLM依赖于运行(连续相同灰度级的像素),而GLSZM依赖于具有相同灰度级的相邻像素区域的计算。
 

灰度级运行长度矩阵(GLRLM)

由Galloway(17)描述的GLRLM提供了关于具有相同灰度级的连续像素运行的空间分布信息,可以在2维或3维中的一个或多个方向上计算。GLRLM特征包括分数,用于评估ROI中作为运行的一部分的像素或体素的百分比,从而反映颗粒度;长运行强调(反)矩(图1),分别针对长运行和短运行的存在进行加权;以及灰度级和运行长度非均匀性,分别评估运行在不同灰度级和运行长度上的分布(14,15,17)。

灰度级大小区域矩阵(GLSZM)和灰度级距离区域矩阵(GLDZM)

由Thibault等人(18)描述的GLSZM基于与GLRLM类似的原理,但这里基于相同灰度级的互连相邻像素或体素的组群(所谓的区域)数量形成矩阵的基础(图2)。更均匀的纹理将导致更宽且更平坦的矩阵。GLSZM不是根据不同方向计算的,但可以根据定义了邻域的不同像素或体素距离进行计算。GLSZM特征可以在2维(8个相邻像素)或3维(26个相邻体素)中计算,并且根据GLRLM的定义,包括分数(作为区域的一部分的像素或体素的百分比)、大区域和小区域强调等(14,18)。

作为GLSZM的一种变体,GLDZM不仅评估具有相同灰度级的相互连接的邻近像素或体素区域,还要求它们与ROI边缘的距离相同。因此,GLDZM特征在纹理特征和形态特征之间是“混合体”,这也反映在一些具有自解释性的GLDZM特征名称中,比如小距离高灰度级强调(18)。

邻域灰度差异矩阵(NGTDM)

由Amadasun和King(19)提出的NGTDM量化了像素或体素的灰度级与其预定义距离内邻近像素或体素的平均灰度级之间的差异总和。关键特征包括NGTDM粗糙度、繁忙度和复杂度。粗糙度反映了中心像素或体素与其邻域之间的灰度差异,从而捕捉到灰度级强度的空间变化速率;即,由相对均匀灰度级(即较低的空间强度变化率)组成的ROI将具有较高的粗糙度值。另一方面,繁忙度反映了中心像素或体素与其邻居之间的快速灰度变化(即强度变化的高空间频率),因此,由许多具有明显不同灰度级的小区域组成的ROI将具有更大的繁忙度。繁忙度(busyness)指的是中心像素或体素与其邻近像素或体素之间的快速灰度变化程度。当一个ROI包含许多小区域,这些区域的灰度级明显不同,就会具有较高的繁忙度。换句话说,繁忙度反映了灰度级变化的空间频率,即ROI内部的灰度级变化快慢程度。)

邻域灰度依赖矩阵(NGLDM)

由Sun和Wee(20)描述,NGLDM也基于中心像素或体素与其邻近像素或体素之间的灰度关系。在这里,如果邻近像素或体素在预定义距离内满足灰度差异范围的依赖准则,就被视为与中心像素或体素相连。然后分析ROI中具有i-和j-依赖邻近像素或体素的中心像素或体素的存在情况。与GLRLM类似,NGLDM特征包括大依赖强调和小依赖强调,分别反映异质性和同质性,以及灰度不均匀性和依赖均匀性,分别反映ROI中灰度级的相似性和灰度级依赖性的一致性(14,20)。

基于模型的特征

基于模型的分析旨在解释空间灰度信息以描述对象或形状。通过计算并拟合ROI的纹理生成参数化模型,并使用其估计参数作为放射学特征(15)。自回归模型是一种基于模型的方法的示例,它基于这样的思想:像素的灰度级是其4个相邻像素的灰度级的加权和,这四个相邻像素分别是左侧像素(θ-1)、左上像素(θ-2)、上方像素(θ-3)和右上像素(θ-4)。此外,标准差σ携带了关于最小预测误差方差的信息,用于测量纹理的规律性(15)。

分形分析还可以提供可用于放射学的特征,尤其是分形维度,它反映了随着放大、尺度或分辨率增加而结构细节的增加速率,因此可作为复杂性的度量。Lacunarity是一个衡量缺乏旋转或平移不变性的特征,反映了不均匀性(21)。

基于变换的特征

基于变换的方法,包括傅里叶变换、Gabor变换和Haar小波变换,以不同的空间分析灰度级模式。例如,离散Haar小波变换分析了不同尺度下图像的频率内容(15)。通过应用一对所谓的正交镜像滤波器(高通滤波器和低通滤波器),可以对图像进行小波分解(22)。虽然高通滤波器突出了灰度级的变化,从而强调了图像细节,但低通滤波器平滑了图像的灰度级,去除了图像细节。信号分解后,得到一组空间定向的频率通道,用于描述局部图像变异性。然后利用频率通道内的能量作为特征。在两个方向上进行高通滤波(图1)捕捉到对角线细节,先进行高通滤波再进行低通滤波捕捉到垂直边缘,先进行低通滤波再进行高通滤波捕捉到水平边缘,而在两个方向上进行低通滤波捕捉到不同尺度下的最低频率(15)。值得注意的是,小波变换不仅可用于生成放射学特征,还可用于图像分割或作为纹理分析的预处理步骤。

基于形状的特征

基于形状的特征描述ROI的几何属性。许多基于形状的特征在概念上比其他放射学特征简单,如2D和3D直径、轴及其比率。基于表面和体积的方法基于网格的使用(例如三角形和四面体等小多边形),更为复杂。特征包括紧凑度和球度,描述ROI的形状与圆形(用于2D分析)或球体(用于3D分析)的差异,以及密度,依赖于构建包围ROI的最小定向边界框(2D分析中为矩形)(14)。

获取参数和特征标准化

基于图像的衡量指标,如SUV和放射学特征,对图像采集设置、重建算法和图像处理非常敏感。最近,Zwanenburg(23)对42项PET放射学研究进行了元分析,以评估特征的稳定性、重复性和标准化;其中21项符合定量评估的条件。研究了数据异质性的不同方面,这是由于采集参数的变化(如扫描持续时间、迭代和子集的数量、重建类型和算法以及空间分辨率)和图像处理方法(分割方法和灰度级离散化)引起的。空间分辨率的影响最大,变异系数(CV)为3.63,其次是扫描持续时间(CV为2.93),分割方法(CV为2.92),重建方法(CV为2.30),用于重建后平滑的高斯滤波器宽度(CV为2.23),迭代次数(CV为1.81)和子集数量(CV为1.08)。分割也有相当大的影响(CV为2.92)(23)。

van Velden等人(24)报告称,大多数放射学特征的可重复性与简单SUV测量相当(60%的特征具有良好的重复性),而特征对于描绘或分割的敏感性要大于对重建方法的敏感性。其他研究也发现放射学特征的可重复性与SUV的可重复性类似(25),并且对图像离散化非常敏感(26)。Lasnon等人(27)发现,采用点扩散函数模型和后滤波的有序子集期望最大化(OSEM)与纯粹的OSEM相比,产生了与SUV和纹理信息相媲美的结果,但是未过滤的点扩散函数图像显示出更高的异质性(在分层患者方面可能更具区分性)。Papp等人(28)使用基于球体的模型比较了各个PET放射组学特征类对空间分辨率和重建算法变化的敏感性。为了最小化特征变化,他们推荐使用小体素,窄高斯后滤波,和Lasnon等人一样,使用点扩散函数建模。根据Yan等人(29)的研究,Bin大小对放射组学特征的影响较小,但迭代次数,后处理滤波宽度和体素大小会影响其中的许多(61个特征中的3个,8个和35个显示出> 20%的CV)。Galavis等人(30)得出结论,由于采集和重建参数(2D或3D OSEM算法,迭代次数,后处理滤波宽度和体素大小)的变化,80%的调查纹理特征显示出大的变异性(>30%)。Pfaehler等人(31)指出,与使用标准OSEM或飞行时间算法重建的图像相比,用点扩散函数重建的PET图像的重复性增强。

由于空间分辨率对放射学特征有特别强烈的影响,对多中心影像数据进行重新采样是缓解扫描仪之间分辨率差异影响的常见策略。Whybra等人(32)研究了PET/CT放射学纹理和形状特征对三线性和样条插值进行重采样到等各向异性体素大小的稳健性。他们报告称,约三分之二的141个测试的放射学特征对两种重采样技术都是稳健的,另外21%的特征可能是可矫正的。然而,两种插值技术之间的绝对差异在某种程度上是相当大的,因此应该始终使用一种插值技术。

最近,提出了PET重建的深度学习方法,既可以用于传统重建图像的后处理(33),也可以用于迭代重建框架内(34),或直接将PET数据映射到图像(35)。这些方法能够恢复或重建比传统OSEM更高质量的PET图像,使图像更少受噪声干扰而不损失分辨率。由于噪声(由计数统计和迭代次数等控制)对计算特征有很大影响,深度学习可能会导致更稳健的放射学特征。

特征融合、选择和降维

特征融合

融合是一种数学后处理技术,用于在图像采集、重建和分析后消除所谓的批次效应(即与采集参数变化相关的中心依赖效应)对放射学特征的影响。融合的目标是将不同中心的放射学特征值进行标准化,使其具有可比性,从而更好地进行统计模型的建立。目前最流行的技术是ComBat融合,最初用于基因组数据,并已经验证可用于去除放射学特征中的中心效应,同时保留病理生理信息(36)。一些研究已经将这种技术应用于PET放射学特征(37,38)。

特征选择和降维

一旦放射学图像分析完成,就需要确定在解决临床问题的统计模型中将使用哪些相关特征(例如,区分良性和恶性病变)。

虽然从理论上来说,通常会提取数百个放射学特征候选项(图3),并将它们作为预测模型的输入,但这将导致所需的模型参数数量呈指数增长。因此,需要删除或转换大量的特征候选项。这个过程称为降维。放射学特征经常显示出高相关性,这意味着存在数据冗余,因此可以丢弃某些特征,将其他特征进行分组,并用代表性特征替代,例如使用主成分分析或线性判别分析。在这些代表性特征中,首选具有最大自然生物范围(即患者间变异性)的信息性特征(39)。Parmar等人(40)比较了14种放射学特征选择方法,包括基于互信息的方法和12种机器学习分类器;Leger等人(41)也采用了类似的方法,重点关注时间至事件发生的生存数据。Lian等人(42)开发了广泛的系统,用于从PET图像中选择放射学特征,以预测肿瘤治疗结果。

图3 放射组学工作流程。

首先,定义感兴趣区域(ROI)或分割病灶。对于ROI或病灶,通常会提取大量的特征候选项。选择能够最有效地代表数据变异性或最适合特定预测模型的特征。与从预先定义的特征集中选择不同,深度学习方法将特征构建和建模直接联系起来,以进一步提高预测准确性和可靠性。

减少冗余而不利用目标变量知识(例如良性或恶性)的降维技术,如主成分分析,很受欢迎,但通常会混合变量并使初步放射组学特征集中的预测因子追踪变得复杂。一旦在特征选择过程中考虑到预测目标,必须小心避免所谓的过拟合,这会导致对预测准确性的过于乐观估计。如果特征数量足够多,即使在随机数据中也可以检测到相关性。

模型构建和分类

在选择了放射组学特征之后,它们被用来预测当前的目标变量,例如疾病或肿瘤类型的存在与否,或者未来的变量,例如治疗反应或复发时间。

目标变量可以是标量(例如生存时间),这可以由回归模型预测,也可以是分类的(例如响应状态或受体阳性),这可以由分类模型预测(图3)(43)。机器学习是人工智能的一个子领域,在过去的20年中得到了快速发展。机器学习模型根据训练样本来学习高维输入(放射组学特征)与目标变量之间的关系。其中一个关键能力是利用预测因子或特征的组合,即所谓的多元模式,与单变量或质量-单变量回归相对应。支持向量机是最早非常成功的模型之一,但需要仔细选择特征(44)。集成方法,如随机森林,通过将特征选择和训练过程中的有效采样相结合,引入了训练稳健分类器或回归器的方法(45)。这种能力是当前许多放射组学方法的核心,这些方法根据特征的预测贡献选择特征。这些方法在从汽车(行人识别)到遗传学(识别关联)等各个领域取得了极大的成功,通过将重点从基于专家的特征选择转移到直接让分类器评估特征候选项并识别具有预测价值的特征(46)。最近,神经网络作为强大的分类和特征构建模型再次兴起。在有足够的训练数据的情况下,卷积神经网络胜过特征选择方案,因为它们不是从预定义和有限的特征候选集中选择特征,而是从图像数据本身构建最优特征(47)。一个限制是需要大量的训练数据。最近,通过利用问题域之间的视觉特征的相似性等策略,成功解决了这个限制。

在测试集上的拟合优度是评估逼近函数对目标函数输出进行预测的准确程度的有效度量。对于分类变量,误报、漏报或派生的度量反映了相关信息。由于许多方法具有参数,接收者操作特征曲线被用来表示在参数范围内的预测准确性。交叉验证方案可以缓解有限的数据集大小问题,其中训练集和测试集在可用数据中轮换使用,但必须谨慎使用。一旦算法设计及其参数在中间交叉验证过程中得到了实质性的改进,提供独立的测试结果的能力就会丧失。在最终验证期间,在算法最终确定之后才接触到的保留数据集是最佳实践。关于机器学习的更多信息可以在Uribe等人最近的一篇文章中找到(11)。

在进行放射组学研究时存在几个注意事项,其中一些在上面简要提到过。这些包括需要高质量、无伪影的图像,最好采用均匀的图像获取协议和重建技术获取,或者在无法达到这种图像质量时,在放射组学分析之前或之后进行适当的校正(例如在多中心回顾性研究中);数据集的大小和完整性;以及独立的训练和验证数据集。除了这些对于有意义的放射组学研究的先决条件外,还有两个经常影响放射组学研究的陷阱:类别不平衡和过拟合。

类别不平衡

在随机临床试验之外,类别不平衡是常见的。特别是在使用例行临床数据的回顾性研究中,感兴趣的病情在队列中的流行率很少与没有该病情的情况相同。例如,在弥漫大B细胞淋巴瘤患者中,大约有16%的患者骨髓受累。在评估18F-FDG PET放射组学用于骨髓受累检测的性能时,必须考虑到这种(16%受累和84%未受累骨髓)的比例不平衡。一个将所有样本案例分配到无骨髓受累组的分类器看似具有不错的准确率84%,但在临床上是无用的,因为它无法在PET图像上区分受累和未受累的骨髓(附录表1;补充材料可在http://jnm.snmjournals.org获取)。因此,不仅需要报告整体准确率,还应该报告类别准确率、敏感性或特异性。

过拟合和欠拟合

如果模型在函数逼近方面没有足够的平衡,就可能会遇到过拟合或稍微程度较低的欠拟合。过拟合发生在具有大量输入参数或自由度过多的模型中,这些模型能够记忆数据,因此除了相关的、与疾病相关的特征之外,还包括反映图像噪声和随机波动的特征(附录图1)。这样的模型在训练过程中对提供的数据点给出正确的分类结果,但对于训练数据集之外的点,其响应是错误的,即该模型无法推广信息。为了避免过拟合,需要对模型函数进行正则化处理,或者减少输入特征的数量,从而减少所需的模型参数数量。使用独立数据集进行验证有助于检测过拟合:如果在训练数据集中错误率下降,但在验证数据集中开始上升,就需要停止训练。另一方面,欠拟合发生在模型无法正确分类训练和验证数据集的情况下,例如当模型过于简单时。在这种情况下,可能需要额外的输入数据或切换到不同的模型。

放射组学评分 Lambin等人(48)根据16个标准开发了一种与成像模态无关的放射组学质量评分,这些标准具有不同的权重;最高可以获得36分。尽管按照已发布的建议使用标准化的图像获取协议是这些标准之一,但它只有一个点的影响较小;针对多中心数据的基于软件的校正或协调技术没有明确提及,可能是因为出版日期的原因;相反,该评分鼓励使用模拟器来评估放射组学特征值的变化。使用7分,给予前瞻性设计和试验注册特别重要性,使用验证数据集则可以获得多达5分的重要性。在3分处,使用特征减少技术以降低过拟合风险也是一个相关的标准。值得注意的是,将放射组学方法与当前的金标准进行比较(例如放射组学与基于图像的TNM分期)的增益评估,以及临床相关性和实用性,每个都为2分,都是重要因素。该评分还建议将放射组学与临床、分子和基因组数据相结合(48)。

临床应用

与使用传统PET指标进行预后或组织特性评估的大量研究相比,文献中关于纹理、形状或直方图特征的应用还很少见。在这一部分,我们将回顾选定的文章以突出展示有希望的临床应用,并讨论其限制。

放射基因组学:将影像数据与生物学关联起来 非小细胞肺癌的放射基因组学引起了特殊的关注。Nair等人(49)研究了定量18F-FDG PET/CT基础的代谢肿瘤体积和直方图特性与非小细胞肺癌患者基因组数据的关联。在接受肿瘤切除前进行PET/CT的25名患者的训练数据集中,有14个放射学特征和3个主要成分与单个基因和共表达基因簇的基因表达相关联。四个基因(LY6E,RNF149,MCM6和FAP)与放射学特征和存活率相关联。对于放射基因组学研究而言,不寻常的是,确认这些关联的测试和验证队列(63和84名患者)比训练队列要大得多。 Yip等人(50)研究了348名非小细胞肺癌患者的18F-FDG PET/CT放射学特征(直方图,GLCM,GLRLM,GRSZM,NGTDM和形状)与表皮生长因子受体或Kristen鼠肉瘤病毒(KRAS)突变之间的关联。尽管8个纹理特性(以及SUV和代谢肿瘤体积)显著与表皮生长因子受体突变状态相关,且1个GLCM特性甚至可以预测表皮生长因子受体突变呈阳性,但没有特性与KRAS突变相关。该研究受限于缺乏验证队列和使用来自8个不同扫描器的PET/CT数据;尽管体素强度被重新采样,但体素大小并未改变。

Pyka等人(51)使用了18F-FET PET放射组学来区分113例高级别胶质瘤患者中的肿瘤分级。只使用了一台PET/CT设备,从而消除了需要重新采样或调和的需求。四个NGTDM特征使得能够区分III级和IV级肿瘤;通过与代谢肿瘤体积的结合,进一步提高了区分度。值得注意的是,没有使用验证集。Lohmann等人(52)对18F-FET PET放射组学进行了回顾性评估,以预测柠檬酸脱氢酶突变,这是一个不常规术前获得的诊断标记。84名患者中有56名在单独的PET扫描器上进行检查,剩下的28名患者在PET/MRI设备上进行检查,也就是说,两个亚组间的几乎所有采集参数(包括分辨率和重建算法)都有所不同。提取了33个特性(直方图,GLCM,GLRLM,GLSZM和形状),84名患者中有26名表现出柠檬酸脱氢酶突变。为了避免过拟合,因此将相关特征的数量减少到2个,并应用了5-和10-折交叉验证。虽然达到了最高81%的准确度,但可能由于类别不平衡和采集参数异质性的结合,敏感度相当低。

在一个实验设置中,Rajkumar等人(53)测试了是否可以使用从125I-A5B7抗癌胚抗原抗体纳米SPECT中提取的GLCM特征来区分转移性结肠癌表型。在14只患有肝结肠癌转移的小鼠中,作者发现,未分化的转移瘤明显比分化良好的病灶更加异质,正如3个SPECT纹理特征所反映的,这些特征也捕获了抗血管治疗效果。

临床预后预测

对治疗反应的早期评估和生存预测对临床医生来说有兴趣,因为这种能力可能有助于选择治疗方法和患者分层,并为治疗方案的改变提供理由。在358名I-III期非小细胞肺癌患者中,Arshad等人(54)使用来自7个机构的治疗前18F-FDG数据,评估放射治疗或化疗放射治疗后18F-FDG PET放射组学对总体生存预测的价值。直方图,形状,和纹理特征(GLCM,GLRLM,和NGTDM,从原始和小波变换的图像中提取)除了传统的PET指标之外,还进行了计算,通过最小绝对收缩和选择算子(LASSO)回归结合加权线性特征组合进行了维度降低。并未对采集参数的变化进行校正。总共,133个数据集用于训练,有204名患者用于内部验证,21名患者用于外部测试。结合的放射组学特征向量正确预测了验证队列中14个月的生存差异,以及测试队列中没有生存差异。

Peng等人(55)评估了一种治疗前基于18F-FDG PET/CT的放射组学签名和生存曲线,以预测III-IVa期鼻咽癌患者的无病生存,使用的图像来自单一扫描器类型和固定的采集协议,来预测无病生存。训练数据集包含470名患者,验证集有237名患者。手动选择放射组学特征(包括直方图,形状,GLCM和GLRLM特征),然后也通过深度学习卷积神经网络自动选择。LASSO Cox回归分析用于降低特征维度。放射组学生存曲线优于基于临床数据和EBV DNA(鼻咽癌中一个已确立的预后生物标志物)的生存曲线。放射组学生存曲线使患者分层为两个风险组,他们在5年无病生存方面有所不同;只有放射组学高风险组从标准化疗放疗之外的诱导化疗中受益。有趣的是,没有评估放射组学特征与其他数据(如DNA)的结合。然而,在Lv等。有趣的是,没有评估放射组学特征与其他数据(如DNA)的结合。然而,这种策略在Lv等人的一项类似研究中得到了评估,在该研究中,128名鼻咽癌患者的放射组学和临床数据的结合稍微提高了无进展生存的预测。(56)

最后,在一项针对214名胃癌患者的研究中,jiang等人(57)研究了18F-FDG PET放射组学特征(直方图,形状,GLCM,GLRLM,GLSZM和NGTDM)在无病生存和总体生存预测中的效用。在这项研究中,训练队列(132名患者)使用单一扫描仪进行检查,而验证队列(82名患者)使用来自不同供应商的不同扫描仪进行检查,提供真正的外部验证。尽管两个队列之间的体素大小和其他采集参数有所不同,但是放射组学评分是基于通过LASSO回归选择的特征构建的,比TNM分期或肿瘤标记物CA 19-9更好地预测了总体生存和无病生存。同样,没有CT放射组学特征或临床或实验室数据包含在放射组学预测模型中。

结论

放射组学是一种复杂的图像分析技术,有可能在精准医疗中确立自己的地位。放射组学特征不仅与基因组数据相关,而且可能提供关于整个肿瘤体积的肿瘤异质性的补充信息,以改进生存预测,因此可能对患者分层有所帮助。对于具有提供定量生物学数据长期传统的核医学,放射组学可能代表了其演变的下一个逻辑步骤,不仅作为临床决策工具,而且作为一种研究工具来发现新的分子疾病途径。然而,开发并严格遵守标准化的图像采集和重建协议至关重要。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值