寻找使用多模态MRI数据分类轻度认知障碍(MCI)亚型的最佳机器学习模型

 在轻度认知障碍(MCI)阶段的干预对预防阿尔茨海默病(AD)具有前景。本研究旨在寻找最佳的机器学习(ML)模型,使用多模态MRI数据对轻度认知障碍的早期和晚期亚型(EMCI和LMCI)进行分类。首先,基于白质骨架的扩散统计分析(TBSS)分析显示LMCI相关的白质变化发生在胼胝体。接着,我们使用基于感兴趣区域的纤维追踪(ROI-based tractography)来确定受影响的胼胝体纤维所连接的皮质区域。接下来,我们准备了两个用于机器学习的特征子集,分别在这些皮质区域中测量静息态功能连接性(TBSS-RSFC方法)和图论度量(TBSS-Graph方法)。我们还准备了在TBSS分析检测到的LMCI相关白质改变区域中的扩散参数的特征子集。使用这些特征子集,我们训练并测试了多个机器学习模型进行EMCI/LMCI分类,并进行了交叉验证。结果显示,使用扩散参数的特征子集的集成机器学习模型(AdaBoost)的平均准确率达到了70%。对于分类有用的大脑区域包括前额叶、顶叶、胼胝体、扣带回、岛叶和丘脑区域。我们的发现表明,使用扩散参数的最佳机器学习模型可能有效地区分AD前驱期的LMCI和EMCI受试者。本文发表在Scientific reports杂志。(可添加微信号siyingyxf18983979082获取原文,另思影提供免费文献下载服务,如需要也可添加此微信号入群,原文也会在群里发布)

缩略词:

AD: 阿尔茨海默病

ADNI: 阿尔茨海默病神经影像学倡议

EEG: 脑电图

MCI: 轻度认知障碍

EMCI: 早期MCI

LMCI: 晚期MCI

MMSE: 迷你精神状态检查

MRI: 磁共振成像

fMRI: 功能性磁共振成像

rs-fMRI: 静息态功能性磁共振成像

RSFC: 静息态功能连接性

SD: 标准差

CV: 交叉验证

ROI: 感兴趣区域

ML: 机器学习

KNN: K最近邻算法

LR: 逻辑回归

DTC: 决策树分类器

RF: 随机森林

SVM: 支持向量机

GBC: 梯度提升分类器

AdaBoost: 自适应提升算法

CC: 胼胝体

HCP: 人类连接组计划

HCP-MMP: 人类连接组多模态划分

MNI: 蒙特利尔神经学研究所

FA: 分数各向异性

gFA: 广义分数各向异性

MD: 平均扩散性

DMN: 默认模式网络

RSN: 静息态网络

ACC: 准确度

ROC: 接收者操作特性

AUC: 曲线下面积

WM: 白质

GM: 灰质

引言

      阿尔茨海默病(AD)是随着时间的推移逐渐发展的最常见的痴呆原因,其特点是认知和行为问题(NIH,链接)。轻度认知障碍(MCI)被视为老化和AD之间的过渡阶段。一旦被诊断为AD,到目前为止还没有明确的治疗方法,这是在疾病的后期阶段。在临床前或前驱阶段进行早期检测和治疗干预有望预防痴呆。据报道,AD的病理生理过程在症状出现前的二十年或更长时间开始。三分之一的MCI在五年的随访中发展为AD。因此,这个临床前或前驱阶段,尤其是在MCI阶段,为预防性干预提供了机会。阿尔茨海默病神经影像学倡议(ADNI)是正常老化、MCI和AD的多站点观察研究。在ADNI中,基于WMS-R逻辑记忆II故事A分数,MCI受试者被分为两个亚型,早期MCI(EMCI)和晚期MCI(LMCI)。EMCI被认为反映了在临床谱系中较早的点,而LMCI则处于进展为AD的较晚的点。由于EMCI和LMCI亚型是通过单一记忆分数根据遗忘损伤的严重程度进行分类的,因此可能会导致低特异性甚至误分类。寻找随疾病进展而变化的潜在高敏感生物标志物可能有助于更精确的疾病分期,从而通过早期干预减少AD患者的数量。尤其是,EMCI阶段可能是疾病干预的最佳阶段。因此,越来越多的关注点在于识别MCI受试者之间的微妙变化。

      白质微结构的完整性通常使用分数各向异性(FA)和平均扩散性(MD)进行评估,因为质子扩散是各向异性的。质子扩散的方向依赖性被量化为FA,而扩散性的大小被量化为MD。减少的FA和增加的MD将反映退行性大脑中的神经元丧失和髓鞘的破裂。基于纤维束的空间统计(TBSS)被开发为一种体素分析,通过与FA骨架的统计来提高多主题扩散成像数据的灵敏度、客观性和可解释性。另一方面,功能MRI基于血氧水平依赖性(BOLD)信号来评估大脑不同部位的神经活动。默认模式网络(DMN)的功能连接性在AD患者以及MCI受试者中通过静息态功能MRI(rs-fMRI)分析被选择性地改变。已经使用了几个图论参数(例如全局或局部效率、小世界性)来测量功能大脑网络的特性。尽管结论不一致,但AD患者在功能网络特性、中心连接性、模块化完整性和/或小世界网络中显示出变化。

       几项采用机器学习(ML)方法的研究已经应用单模态或多模态神经影像数据来分类MCI亚型。Gray等人使用了FDG-PET(18F-氟脱氧葡萄糖-正电子发射断层摄影)的信息。Nozadi等人也使用PET图像进行分类,比较了FDG和Amyloid (AV-45) PET生物标志物。Shi和Liu从rs-fMRI信号中提取了特征,而Sheng等人通过图论处理了数千个大脑网络特征进行分类。Wee等人指出,结合结构和功能连接性分析的多模态神经影像学方法显著提高了MCI的识别准确性。Goryawala等人结合了MRI体积测量和神经心理学评分来分类MCI亚型。总的来说,通过扩散MRI测量的白质损伤被认为在AD患者中早于灰质萎缩。然而,使用扩散MRI的ML模型数量有限,用于分类MCI亚型。

     在本研究中,我们假设MCI受试者的白质微结构中的微妙大脑改变可以更早地被检测到,这促使我们寻找最佳的基于扩散MRI的ML模型进行EMCI/LMCI分类。我们首先研究了MCI受试者的白质完整性在TBSS中的改变。接下来,我们通过基于ROI的纤维追踪确定了连接的皮质区域。然后,为了获得分类特征,我们通过rs-fMRI分析了静息态功能连接性(RSFC)和图论度量。我们还准备了两个扩散参数(FA, MD)的特征子集,这些参数位于TBSS检测到的与LMCI相关的白质变化区域。使用这四个特征子集,我们采用了多个ML模型进行EMCI/LMCI分类,并使用交叉验证评估了性能。

材料和方法

伦理声明

      所有的个体影像数据,与广大科学界公开分享,均来自基于数据使用协议(链接)的阿尔茨海默病神经影像学倡议(ADNI)。所有的方法和协议都得到了千叶大学医学部研究伦理委员会的批准。所有的方法都按照相关的指南和规定进行。

ADNI参与者

     本文中使用的数据来自ADNI数据库(adni.loni.usc.edu)。ADNI于2003年作为一个公私合作伙伴关系启动,由首席研究员Michael W. Weiner博士领导。要获取最新信息,请访问www.adni-info.org。ADNI-3于2016年开始,包括美国和加拿大的59个研究中心的科学家。为确保有足够的统计能力评估每个扫描站使用不同协议收集的数据中的差异,我们只使用了在下载时在ADNI-3中可用的数据。本研究反映了2020年12月可用的数据。在ADNI中,MCI受试者的诊断标准为:

      (1) 参与者、研究伙伴或临床医生报告的主观记忆问题;

      (2) 通过在韦氏记忆量表修订版的逻辑记忆II子量表(延迟段落回忆,仅限段落A)上得分在教育调整范围内记录的异常记忆功能(最高分为25);

     (3) 迷你精神状态检查(MMSE)得分在24到30之间;

     (4) 全球临床痴呆评分(CDR)得分为0.5,记忆框得分至少为0.5;

      (5) 一般认知和功能表现得到足够的保留,以至于不能诊断为AD。本研究中使用的参与者是根据WMS-R逻辑记忆II故事A得分诊断为早期MCI(EMCI)和晚期MCI(LMCI)的34和32名个体。EMCI受试者的记忆功能约低于1.0 SD,而LMCI受试者的记忆功能约低于1.5 SD,这些都是根据教育调整的标准。具体的截止分数如下(最高分为25):EMCI的诊断分数为16年或更多年的教育为9-11;8-15年的教育为5-9;0-7年的教育为3-6。LMCI的诊断分数为16年或更多年的教育为8;8-15年的教育为4;0-7年的教育为2。本研究的人口统计学和神经心理学信息显示在表1和补充图S1、S2中。

表1 来自ADNI-3数据集的人口统计学和神经心理学信息。

图片

MMSE 迷你精神状态检查,MoCA 蒙特利尔认知评估,ADAS-Cog 阿尔茨海默病评估量表-认知量表,SD 标准差 [最小值–最大值]。

ADNI中的MRI采集协议

      ADNI-3的影像仅在3T扫描仪上完成。ADNI-3的MRI采集包括参与者扫描(3平面定位器、加速矢状MPRAGE、矢状3D FLAIR、轴向T2 STAR、轴向3D PASL、轴向DTI、场映射、轴向rs-fMRI、HighResHippocampus)和水模扫描(3平面定位器、QC水模MPRAGE)。T1加权MRI(体素大小=1 mm^3)、扩散加权图像(DWI)(体素大小=2 mm^3)、功能MRI的扫描协议在ADNI网站上有详细描述(链接)。ADNI-3使用了3T Siemens、Philips和GE扫描仪的扩散MRI协议,使用b=0和1000 s/mm^2加权体积的2.0 mm等向体素。从ADNI-3数据库获得的DICOM图像被转换为NIFTI格式,使用MRIcroGL的dcm2nii部分。

扩散MRI预处理

      扩散MRI数据使用MRtrix3.0、FSL 6.0和ANTs进行预处理。我们根据Maximov等人的建议进行了预处理。进行了以下步骤:(1) 使用Marchenko-Pastur主成分分析(MPPCA)进行噪声校正('dwidenoise';MRtrix3.0命令),(2) Gibbs振铃伪影校正('mrdegibbs';MRtrix3.0命令),(3) 运动校正、涡流和易感性失真校正('dwifslpreproc';MRtrix3.0命令),(4) 使用高级归一化工具(ANTs)计算的偏置场校正,(5) 在FSL中的DTIFIT在预处理的扩散图像上的每个体素处拟合一个扩散张量模型。

扩散MRI纤维追踪

      确定性纤维追踪是按照之前的描述进行的。简而言之,纤维追踪的重建是使用DSI Studio进行的基于ROI(感兴趣区域)的方法。在通过全脑播种生成纤维束后,选择通过ROIs运行的束进行分析。纤维追踪的参数包括步长为0.2 mm,最小和最大纤维长度分别为20 mm和800 mm,转角阈值为60°。这个过程重复,直到纤维方向的定量各向异性(QA)下降到默认阈值以下,直到纤维束连续性不再满足进展标准,或直到追踪达到10,000,000种子。

       HCP-MMP1.0用于大脑的分割,它是在CIFTI格式中创建的基于表面的坐标系统(“灰度坐标”)。在本研究中,使用DSI Studio内置的HCP MMP1.0图谱将所有180个区域从基于表面的坐标系统转换为volume坐标。

      进行了定量纤维追踪分析,其中DSI Studio的“连接矩阵”功能用于生成代表纤维在每个主题对齐的HCP MMP1.0图谱的区域中结束的数量的矩阵。生成双侧连接矩阵后,每个连接对应的流线数除以每个束的总数。

HCP 1065模板

   HCP 1065模板是根据来自Human Connectome Project的1065名受试者的扩散MRI数据(2017 Q4,1200-subject release)构建的。HCP1065数据根据WU-Minn HCP开放访问数据使用条款共享。HCP1065配准基于非线性ICBM152 2009a空间。使用了多壳扩散方案,b值分别为1000、2000、3000 s/mm^2。扩散采样方向的数量分别为90、90和90。平面分辨率为1.25 mm,切片厚度为1.25 mm。使用q-space diffeomorphic重建在MNI空间中重建了扩散数据,以获得自旋分布函数。使用了1.7的扩散采样长度比,输出分辨率为1 mm。分析使用DSI Studio进行。

基于纤维束的空间统计(TBSS)

      来自ADNI-3的预处理扩散MRI影像数据进一步使用DSI Studio进行处理。使用q-space diffeomorphic重建(QSDR)在MNI空间中重建了扩散数据,QSDR是广义q采样成像(GQI)的扩展,用于获得自旋分布函数(SDF)。GQI从q-ball成像(QBI)中使用的壳采样方案中获得SDF,与经典的扩散张量成像(DTI)算法相比,它对于体素内方向异质性更为敏感。广义分数各向异性(gFA)被视为DTI导出的FA的QBI模拟,它是最广泛使用的QBI测量。由于Corbo等人(2014)展示了基于gFA的TBSS与基于FA的TBSS相比的优势,我们使用gFA而不是FA进行了之前描述的基于gFA的TBSS。在本研究中,“gFA”表示广义FA,而“FA”表示DTI-FA。

       通过DSI studio从重建的扩散数据中获得gFA或MD(平均扩散性)图像后,我们分别使用FSL的TBSS(基于纤维束的空间统计)对gFA或MD数据进行了体素逐一的统计分析。TBSS在应用体素逐一的跨受试者统计之前,将所有受试者的gFA或MD数据投影到平均的gFA或MD纤维骨架上。TBSS旨在提高多主题扩散成像研究分析的敏感性、客观性和可解释性。对于所有TBSS分析,p < 0.05被认为是显著的。由于不知道零分布,非参数置换测试用于在EMCI和LMCI受试者之间检测FA差异的统计图上进行阈值设置。应用了无阈值簇增强(TFCE)来找到显著的体素簇(p < 0.05)并应用家族误差纠正(FWE)的多重比较。

静息态功能MRI (rs-fMRI)

       使用CONN-fMRI工具箱进行功能连接(FC)分析,该工具箱用于统计参数映射(SPM12),它是基于MATLAB的跨平台软件。简而言之,经过带通滤波(0.008-0.09 Hz)的静息态数据由CONN处理,包括切片时序校正、重新对齐、个体结构-功能图像共配准、MNI模板标准化和空间平滑。白质、CSF(脑脊液)和生理噪声源减少被视为混杂因素,并采用了实施的CompCor策略。

      ROI到ROI的fMRI分析基本上使用广义线性模型(GLM)方法计算给定区域与所有其他区域之间的BOLD活动的时间相关性。对于皮层区域的分割,DSI studio内置的HCP MMP 1.0图谱被纳入CONN进行FC分析。每个受试者和每个条件的所有FC测量都在CONN中可用(一阶分析)。获得了反映标准化相关系数的受试者特异性对比图像。相关系数(r)通过Fisher的z变换转换为正态分布变量(z)。

图测量(ROI级别)

      使用CONN工具箱中的图论分析,我们通过ROI到ROI方法探索了大脑区域之间的静息态功能连接性(RSFC)。所有ROI级图测量都基于具有节点(ROIs)和边(超阈值连接)的非定向图。对于每个受试者,通过绝对或相对阈值对相关的ROI到ROI相关性(RRC)矩阵r进行阈值化来计算图邻接矩阵A。然后,基于所得的图,可以计算许多测量值,这些测量值解决了图中每个ROI的拓扑属性以及整个ROI网络的属性。

基于机器学习(ML)的分类

      我们使用了scikit-learn,这是Python 3中的一个机器学习(ML)库,来进行多种ML分类算法。基于选定的特征子集,我们采用了几种分类器进行ML模型的建立,包括支持向量机(SVM)、K-最近邻(KNN)、逻辑回归(LR)、随机森林(RF)、梯度提升分类器(GBC)和自适应增强(AdaBoost)。SVM是一种有监督的学习方法,它寻找一个最优的分隔超平面来分隔类,从而最大化间隔。LR是用于预测因变量和自变量之间关系的统计技术,其中因变量是二进制的。K-最近邻(KNN)是一种有监督学习算法,它通过计算测试数据与所有训练点之间的距离来尝试预测测试数据的正确类别。RF、GBC和AdaBoost是基于提升或装袋多个相对较弱和不准确的规则来创建高度准确的预测规则的思想的集成ML算法,从而提高单个估计器的泛化性/鲁棒性。

       我们使用了十折交叉验证(CV)来评估每个ML模型。在所有评估中,我们使用了scikit-learn工具(链接)中的分层交叉验证器‘StratifiedKFold (n_splits = 10, random_state = 0)’,这使我们能够基于相同的条件比较分类性能。测试部分仅用于测试(评估)。简而言之,数据被分为‘训练’和‘测试’集。模型仅使用‘训练’集进行训练,使用‘测试’集评估模型性能。使用准确率(ACC)、精确度、召回率、F1分数来评估不同分类器的分类性能,这些都是基于分类结果的混淆矩阵计算得出的。使用scikit-learn工具(链接)中的‘roc_auc’计算接收者操作特性曲线下的面积(AUC(ROC))。我们取每个指标的平均值来评估分类性能。ACC、精确度、召回率和F1分数的定义如下:ACC = (TP + TN)/(TP + TN + FP + FN),精确度 = TP/(TP + FP),召回率 = TP/(TP + FN),F1分数 = 2 * TP/(2 * TP + FP + FN),其中TP、TN、FP和FN分别代表真正、真负、假正和假负的数量。

特征提取

      为每个受试者准备了总共四个特征子集。每个受试者的特征子集包含12-36个特征列和最后一列的类标签(即EMCI;标签0,LMCI;标签1)。基于FA的TBSS、基于MD的TBSS方法;我们测量了通过基于gFA的TBSS检测到的与LMCI相关的白质变化的皮层区域中的FA和MD值(一个特征向量包含14个元素;14=7个区域x(平均FA+MD))和基于MD的TBSS(一个特征向量包含24个元素;24=12个区域x(平均FA+MD))。TBSS-RSFC、TBSS-Graph方法;我们首先确定了受影响的胼胝体纤维连接的皮层区域,然后分别进行rs-fMRI分析,以计算这些皮层区域的静息态功能连接性(RSFC)和图论度量。使用每个受试者的ROI-to-ROI二进制相关矩阵(基于HCP-MMP1.0图谱的360x360矩阵),我们获得了连接的皮层区域之间的功能相关系数(r),该系数通过Fisher r-to-z转换转化为z值(即TBSS-RSFC方法)。TBSS-RSFC方法为每个受试者产生了一个包含12个元素的特征向量(12=相关系数(z)x12个连接区域)。我们还使用CONN-fMRI工具箱测量了皮层区域中的2个代表性功能分离的图论度量(即TBSS-Graph方法)。TBSS-Graph方法为每个受试者产生了一个包含36个元素的特征向量(36=2个图论度量x18个HCP-MMP1.0区域)。

结果

基于gFA的TBSS的LMCI相关白质(WM)改变

      为了寻找EMCI/LMCI分类的最佳ML模型,我们首先使用了ADNI数据库中的扩散MRI数据集(如图1中的流程图)。基于gFA的TBSS显示了LMCI相关的白质(WM)变化位于胼胝体(CC),这是最大的交叉纤维束(图2A)。图2A中显示的LMCI相关WM变化被分为CC(胼胝体)中的前部ROI(α, a)、中部ROI(β, b)和后部ROI(γ, c, 和 δ)(图2B)。然后,为了确定哪些皮层区域可能通过胼胝体纤维在两个半球之间连接,我们使用LMCI相关WM变化区域作为ROI在模板大脑(HCP1065)中进行了纤维跟踪(图2C)。然后,我们通过皮层端点分析量化了每束纤维束投射到的皮层区域。图2D中的表格列出了通过每对ROI运行的纤维束连接的前3个皮层区域,这些区域在模板大脑上进行了叠加表示(图2E)。皮层端点分析显示,通过ROI(α-a)穿过的纤维束连接了额叶的前额上回和中回(10d, p10p, 9p, 9a)(图2C,E)。那些通过ROI(β, b)穿过的纤维束连接了上部运动和前中央区域(SFL, SCEF, 6mp)(图2C,E)。那些通过ROI(γ-c)和(δ)穿过的纤维束连接了包括中央旁、后中央皮层(3b, 5mv)、前扣带(7Am)、上部顶叶(5L, 7AL, 7PC)和枕叶视觉区域(V3, V3A)在内的皮层区域,分别如此(图2C,E)。图2F中的表格显示了LMCI相关WM变化的每个ROI中的平均扩散参数(平均FA和MD)。尽管每个区域之间存在个体差异,但与EMCI受试者相比,LMCI受试者在ROI α中观察到了FA值的降低(p < 0.05, t检验)。图2F的统计数据在补充图S3中。

图片

图1. 表示EMCI/LMCI分类的机器学习(ML)方法的流程图。

      该流程图表示了EMCI/LMCI分类的机器学习(ML)算法框架。步骤1包括通过多模态方法进行特征提取,包括TBSS、纤维跟踪、RSFC和图论。步骤2包括使用十折交叉验证(CV)的ML模型(SVM、KNN、LR、DTC、RF、GBC、AdaBoost)。数据集被划分为训练和测试数据集,用于十折CV,计算平均的“准确率(ACC)”、“召回率”、“精确度”、“F1分数”和“AUC(ROC)”。

MCI轻度认知障碍,EMCI早期MCI,LMCI晚期MCI,FA分数各向异性,MD平均扩散性,TBSS基于纤维束的空间统计,RSFC静息态功能连接性,CV交叉验证,ROI兴趣范围,ML机器学习,KNN k-最近邻算法,LR逻辑回归,DTC决策树分类,RF随机森林,SVM支持向量机,GBC梯度增强分类器,AdaBoost自适应增强,ACC准确率,ROC接收者操作特性,AUC曲线下面积。

图片

图2. TBSS和纤维追踪分析的顺序整合。

(A) 基于gFA (广义分数各向异性) 的TBSS在应用体素逐个交叉受试者统计(EMCI与LMCI)之前,将所有受试者的gFA数据投影到平均gFA纤维骨架上。已配准的平均受试者的gFA纤维骨架以绿色表示,而LMCI相关的白质变化以红色表示。平均gFA纤维骨架被叠加在矢状、冠状和轴向T1加权MRI图像上(ICBM平均大脑)。

左侧:左半球的矢状视图,中间:冠状切面,右侧:轴向视图。显著性水平为p < 0.05(EMCI与LMCI,阈值自由簇增强和家族误差校正)。

(B) 用于纤维追踪的感兴趣区域(ROIs),由基于gFA的TBSS(EMCI与LMCI)识别为白质改变,分别叠加在矢状、轴向和冠状T1加权MRI图像上(ICBM平均大脑)。α、β、γ和δ表示左半球的胼胝体中的ROIs,而a、b和c表示右半球中的ROIs。

(C) 使用改变的白质区域作为ROIs的纤维图,分别叠加在矢状、轴向和冠状T1加权MRI图像上(ICBM平均大脑)。通过ROIs(α,a)、ROIs(β,b)、ROIs(γ,c)和ROI(δ)的流线分别以红色、蓝色、黄色和绿色显示。

(D) 表格显示了由端点分析确定的胼胝体纤维在两个半球之间投射的前三个皮层区域(%,流线数/每个束的总数)。

(E) 用于TBSS-RSFC和TBSS-Graph方法的皮层区域,叠加在3D玻璃大脑上(HCP1065)。红色区域是额叶的皮层区域(即10d、9a、9m),蓝色区域是前中央区域(即6mp、SFL、SCEF),黄色区域是顶叶(即5L、7AL、7Am),绿色区域是枕叶(即V3、V3A)。

(F) 表格显示了LMCI相关的白质变化的每个ROI中的平均扩散参数(平均FA、MD),这些变化被细分为ROI α、a、β、b、γ、c和δ。**p < 0.05(EMCI与LMCI,t检验)。统计数据在补充图S3中。FA分数各向异性,MD平均扩散性,TBSS基于纤维束的空间统计,

ML机器学习,MCI轻度认知障碍,EMCI早期MCI,LMCI晚期MCI,RSFC静息态功能连接性,ROI兴趣范围,SD标准偏差。

      基于ROI和图论的RSFC的特征提取为了通过机器学习(ML)对EMCI/LMCI受试者进行分类,我们分别对上述皮层区域(图2E)进行了rs-fMRI分析,以计算静息态功能连接性(RSFC)和图论指标。首先,使用每个受试者的ROI-to-ROI二进制相关矩阵,我们获得了连接的皮层区域之间的功能相关系数(z)(即TBSS-RSFC方法)(12个元素=1个系数(z)×图2D中的12个连接区域)。另一方面,先前基于图论的研究显示AD患者的功能分离受损。然后,我们通过在rs-fMRI分析上应用图论分析,在上述皮层区域中测量了代表性功能分离的图论指标,包括聚类系数和局部效率(36个元素=2个指标×图2E中的18个皮层区域),即TBSS-Graph方法。

      基于MD的TBSS的LMCI相关白质改变我们还进行了基于平均扩散性(MD)的TBSS,以研究LMCI相关的WM改变(图3A)。图3B显示了LMCI相关的WM变化,这些变化被细分为额叶、顶叶、颞叶、枕叶、胼胝体(CC)和扣带,以及岛和丘脑区域。我们测量了每个双侧LMCI相关WM变化区域中基于MD的TBSS(p < 0.05,TFCE校正)的显著体素团的体积(mm3)(图3C)。这一结果显示了左半球优势的LMCI相关WM改变(总计左侧:9286,右侧:7161 mm3),尤其是在额叶(左侧:2511,右侧:1487)、CC(胼胝体)和扣带(左侧:900,右侧:284)。我们还研究了基于MD的TBSS的LMCI相关变化的每个区域的平均扩散参数(平均FA和MD)(图3D)。尽管每个区域之间存在个体差异,但我们发现与EMCI受试者相比,LMCI受试者的右顶叶MD值较高。图3D的统计数据在补充图S3中。

图片

图3. 基于MD的TBSS和改变的白质区域

(A) 基于MD的TBSS将所有受试者的MD数据投影到平均MD纤维骨架上,然后应用体素逐个受试者统计(EMCI vs. LMCI)。已配准的平均受试者的MD纤维骨架以绿色表示,而LMCI相关的白质变化以红色表示。MD纤维骨架叠加在冠状、矢状和轴向T1加权MRI图像(ICBM平均大脑)上。

左侧:冠状视图,中间:左、右半球的矢状视图,右侧:轴向视图。显著性水平为p < 0.05(阈值自由簇增强和家族误差校正)。 

(B) 通过基于MD的TBSS(EMCI vs. LMCI)确定的LMCI相关的白质变化分别叠加在3D玻璃平均大脑(上部图像)和T1加权MRI图像(下部图像)上。前、顶、颞、枕叶、胼胝体(CC)和扣带,以及岛和丘脑区域分别以红色、黄色、蓝色、绿色、紫色和天蓝色显示。(C) 表格显示了基于MD的TBSS在每个半球中LMCI相关的白质变化的总体积(mm3),这些变化被细分为前、颞、顶、枕叶、胼胝体(CC)和扣带(Cing),以及岛叶和丘脑区域。 

(D) 表格显示了每个ROI的LMCI相关的白质变化的平均扩散参数(平均FA和MD),这些变化被细分为前、颞、顶、枕叶、胼胝体(CC)和扣带(Cin),以及岛叶和丘脑区域。

*p < 0.1, **p < 0.05(EMCI vs. LMCI,t检验)。统计数据在补充图S3中。FA:分数各向异性,MD:平均扩散性,TBSS:基于纤维束的空间统计,CC:胼胝体,MCI:轻度认知障碍,EMCI:早期MCI,LMCI:晚期MCI。

    接着,我们准备了两个额外的特征子集,分别是由gFA-based TBSS和MD-based TBSS检测到的改变的WM区域的扩散参数(FA, MD)(24个元素 = 6个区域/半球 × 2 × (平均FA, MD))。

      机器学习方法及EMCI/LMCI分类的性能在这项研究中,主要目的是寻找EMCI/LMCI分类的最佳ML模型。使用上述的四个特征子集,我们然后采用了多种ML分类器来区分LMCI和EMCI受试者,包括支持向量机(SVM)、k-近邻(KNN)、决策树分类器(DTC)、逻辑回归(LR)、随机森林(RF)、梯度提升分类器(GBC)和自适应提升分类器(AdaBoost)。我们通过计算准确率(ACC)、召回率、精确度、F1分数和接收器操作曲线(ROC)下的曲线面积(AUC)来比较这些多种ML分类器的分类性能,使用十折交叉验证(CV)。我们取每个指标的平均值来评估分类性能。表格显示,

       使用MD-based TBSS的扩散参数特征,AdaBoost分类器(图4A的灰色斜线部分),一种集成ML算法,提供了70%的准确率和79%的ROC下的AUC的更好性能。

图片

图4. 使用特征子集的ML模型中的EMCI/LMCI分类性能

(A) 该表格显示了使用gFA-based TBSS、MD-based TBSS、TBSS-RSFC和TBSS-Graph方法的四个特征子集的ML模型(SVM、KNN、DTC、LR、RF、GBC、AdaBoost)的EMCI/LMCI分类性能。性能是通过测量平均准确率(ACC)、召回率、平均精确度、F1分数和AUC(ROC)来评估的。 

(B) 用于EMCI/LMCI分类的有用大脑区域。使用从每个大脑区域组合中提取的特征,通过测量平均准确率(ACC)、召回率、平均精确度、F1分数和AUC(ROC)来评估AdaBoost的分类性能。大脑区域被细分为以下组合:#1. 额叶和顶叶,#2. 颞叶和顶叶,#3. 颞叶和枕叶,#4. 前叶和颞叶,#5. 颞叶和枕叶,#6. 胼胝体&扣带回,岛叶&丘脑区域,#7. 前叶和顶叶,胼胝体(CC)和扣带回(Cing),以及岛叶和丘脑区域。 

(C) 用于EMCI/LMCI分类的有用大脑半球。使用从右半球或左半球提取的特征,通过测量平均准确率(ACC)、召回率、平均精确度、F1分数和AUC(ROC)来评估AdaBoost的分类性能。

RSFC 静息态功能连接,ROI 兴趣范围,ML 机器学习,SVM 支持向量机,KNN k-最近邻算法,LR 逻辑回归,DTC 决策树分类器,RF 随机森林,GBC 梯度提升分类器,ACC 准确率,AUC 曲线下面积,ROC 接收器操作特性,CC 胼胝体。

     我们研究了哪些大脑区域对于EMCI/LMCI分类是有用的。通过MD-based TBSS检测到的改变的WM区域被细分为六个区域,包括额叶、顶叶、颞叶、枕叶、胼胝体(CC)和扣带回,以及岛叶和丘脑。在图4B中,我们进一步探讨了这些区域的哪些组合可以通过AdaBoost分类器提供更好的性能(例如,#1 额叶-顶叶,#2 颞叶-顶叶,#3 颞叶-枕叶,#4 前叶-颞叶,#5 颞叶-枕叶,#6 胼胝体(CC)-扣带回-岛叶-丘脑,#7 前叶-顶叶-岛叶-丘脑,#8 颞叶-枕叶-CC(胼胝体)-扣带回-岛叶-丘脑)。图4B中的表格显示了使用每个区域组合的特征的AdaBoost分类器的EMCI/LMCI分类性能。来自#7区域的特征,包括额叶、顶叶、胼胝体和扣带回,以及岛叶和丘脑,导致了更好的性能,准确率为71%,AUC为73%(在图4B的灰色斜线部分)。此外,来自左半球的特征导致了稍微更高的性能,AUC为71%(图4C)。

     最后,我们将我们的结果与之前使用ML分类器进行EMCI/LMCI分类的研究中的结果进行了比较(表2)。我们的结果显示,通过AdaBoost分类器得到的70%的准确率和79%的AUC与之前的报告中的73-87%的准确率和78-90%的AUC相当。

表2:与之前的EMCI/LMCI分类研究进行比较。

图片

*SLRM 逐步线性回归模型。*M2FL方法 流形正则化多任务特征选择。*DCN 动态连接网络。*LDA 线性判别分析。*DNN 深度神经网络。

讨论

      在当前的研究中,我们基于一个假设提出了几种基于扩散MRI的EMCI/LMCI分类的机器学习方法,即通过扩散MRI可以更早地检测到白质微结构中的微妙脑变化。使用从单模态或多模态MRI数据(包括扩散MRI)中提取的四个特征子集,我们训练和测试了多个机器学习模型,并使用交叉验证评估了性能。我们的结果表明,扩散参数(FA、MD)的单模态数据提供了比多模态方法(TBSS-RSFC、TBSS-Graph方法)更好的性能。前额叶、顶叶、胼胝体、扣带回、岛叶和丘脑的扩散参数是有用的分类因子。此外,从左半球提取的特征对分类略微有用。一般来说,不同的神经影像学模态可以提供比单一模态更多的基本互补信息。然而,我们的结果显示,扩散MRI的单模态特征提供了更高的分类性能。

      我们发现左半球占主导地位的分类特征可能反映了左半球白质体积的更多变化,这与之前的研究是一致的。Goryawala等人显示,EMCI/LMCI分类的显著特征是来自左半球的大脑体积。这些结果表明,在MCI进展过程中可能会发生不对称的白质改变。此外,我们的结果显示,前额叶、顶叶和扣带回的有用特征与之前的研究部分一致。Hojjati等人确定了MCI亚型之间存在显著差异的网络,包括前额、颞叶和顶叶。Goryawala等人显示,EMCI/LMCI分类的显著分类因子是颞叶、顶叶和扣带回的皮层体积。Sheng等人使用图论度量选择了颞叶或扣带回皮层的特征。此外,我们的发现表明,岛叶和丘脑与MCI亚型的分类有关。许多研究已经揭示了岛叶灰质损失、AD早期岛叶网络功能障碍、丘脑的无症状改变。这些发现可能反映了在MCI进展过程中岛叶和丘脑的白质改变。

       在过去的十年中,已经提出了几种用于AD和MCI分类的机器学习方法。目前AD的诊断方法主要依赖于神经心理学测试、神经影像学和生物流体,包括脑脊液(CSF)和血清。Gurevich等人和Kang等人应用神经心理学分数通过机器学习来区分AD和认知障碍。一些研究使用CSF和血清数据通过机器学习进行分类。已经应用了许多神经影像学方法来分类AD和MCI,包括Aβ-淀粉样蛋白和tau沉积的正电子发射断层扫描(PET)、用于检测脑萎缩的结构MRI、扩散MRI和功能MRI。

       尽管我们的结果显示扩散MRI的单模态特征提供了更高的性能,但许多研究已经通过多模态MRI分析和最佳特征选择有效地分类了MCI亚型。一般来说,从MRI或PET分析中提取的特征矩阵包含大量的无关或冗余特征。为了去除无关的特征并减少特征维数,在分类之前通常会进行特征选择(表2)。Goryawala等人引入了一个名为SLRM(逐步线性回归模型)的新框架,将MRI体积测量与神经心理学分数相结合。Jie等人比较了M2FL和基于gLASSO的方法之间的特征选择方法的效果,使用动态连接网络(DCNs)。Nozadi等人通过多模态PET-MRI配准方法提取了ROIs作为特征。Sheng等人通过过滤和包装特征选择程序处理了数千个大脑网络特征。Zhang等人也使用了多个大脑网络特征,并通过三种不同的算法进行了特征选择。Shi和Liu通过计算从分解的rs-fMRI信号中得到的希尔伯特加权频率(HWFs)来提取特征,使用独立的双样本t检验作为SVM的特征选择方法。总的来说,这些结果表明,从多模态MRI数据中进行最佳特征选择可能对提高分类性能至关重要。因此,以前的研究通常在提取每个单一模态数据后结合多模态特征,然后进行最佳特征选择。相比之下,我们的方法将扩散MRI和rs-fMRI或图论的多模态性质进行了顺序集成。我们推测,我们的多模态性质的顺序集成方法(TBSS-RSFC和TBSS-Graph方法)导致了特征的过度减少,并丢失了非线性的相互关系。这可能导致分类的性能较差。

      总的来说,白质(WM)损伤被认为早于灰质(GM)萎缩和网络功能障碍。我们的TBSS分析显示LMCI相关的白质(WM)变化发生在胼胝体(CC)。许多使用结构和扩散MRI的研究揭示了神经系统疾病中CC的白质变化,包括AD、双极性障碍、精神分裂症和亨廷顿病。WM变化可以由于多种因素发展,包括脱髓鞘和轴突数量减少,和/或皮质灰质(GM)萎缩。因此,CC(胼胝体)中的WM变化是否特异于每种疾病仍然不清楚。在AD中提出了两种不同的机制来导致CC萎缩;胼胝体纤维的直接髓鞘损伤;以及GM中的细胞死亡,特别是皮层第III层的大锥体细胞。可以假设,CC(胼胝体)中的WM变化会影响两个半球之间的通信。Vecchio等人(2015)显示,通过DTI分析的CC中的FA减少与MCI和AD患者的静息状态EEG中的两个半球功能连接丧失有关。此外,与AD患者的MMSE分数相关的认知相关WM束(e.g. 皮质束、上纵束)中的FA减少和MD增加。这些结果表明,MCI受试者的WM改变可能部分导致AD中神经网络的分离障碍。据报道,AD的病理生理过程在症状出现前20年或更早就开始了。Aβ-淀粉样蛋白的沉积是临床前AD阶段的早期迹象之一。几项神经影像学研究已经显示了早期白质改变与淀粉样蛋白PET中的淀粉样蛋白沉积之间的关系。尽管结果并不完全一致,但这些研究已经表明,白质微结构变化(FA减少和MD值增加)可能与Aβ-淀粉样蛋白沉积相关。总的来说,这些发现可能支持我们的假设,即通过扩散MRI数据可以更早地检测到微小的大脑变化。

      本研究存在几个局限性。还有几个问题需要进一步解决。首先,ADNI-3数据集中MCI受试者的样本量,特别是LMCI的样本量是有限的。ADNI的成像是在超过50个成像中心进行的,使用来自三大MR供应商(GE、Siemens和Philips)的扫描仪。尽管ADNI MRI核心已经建立了一套标准的协议和程序(www.adni-info.org.),但不同的扫描仪可能会导致对成像数据分析的潜在不一致性。由于ADNI-3项目仍在进行中,每个受试者的临床和神经心理学信息是有限的。在准备这篇论文时,有关神经心理学评分和生物标志物的额外信息变得可用。我们在表1和补充图S1、S2中添加了额外的可用信息。根据最近的研究,各种神经心理学评分和生物标志物可以提高与神经影像学研究相结合的分类性能,包括MMSE、RAVLT、CSF蛋白水平和载脂蛋白-E(APOE)基因型。MCI中的异常记忆功能是由单一的记忆分数确定的,这可能导致误分类,从而导致本研究中的低准确性和特异性。我们的结果必须通过更大的数据集和随访的纵向研究来验证,以减少个体差异并验证所提出的ML模型。

     总之,LMCI相关白质变化区域中的扩散参数特征集对于使用集成ML算法区分LMCI和EMCI受试者是有用的。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值