利用电生理信号进行痴呆症鉴别的脑网络分析

背景:与痴呆症相关的疾病一直是研究和医疗界的长期挑战,因为它们的各种形式都表现出类似的临床症状。这些疾病在晚期通常是不可逆的,因此缺乏有效和批准的治愈方法。由于其前驱阶段通常在表现出明显临床症状之前潜伏很长时间,因此建议在早期进行治疗作为可能的解决方案。电生理信号的连接分析在通过早期识别诊断各种痴呆症方面发挥了重要作用。

     目标:随着电生理信号的各种应用,本研究的目的是系统地回顾连接分析框架在痴呆症中的逐步程序。本研究旨在识别此类框架中涉及的方法学问题,并提出解决这些问题的方法。

  方法:在本研究中,使用ProQuest、PubMed、IEEE Xplore、Springer Link和Science Direct数据库,探索2016年1月至2022年12月期间与痴呆症相关的电生理信号连接分析的发展和进展。研究文章的质量评估使用了Cochrane指南,用于系统评价诊断测试的准确性。

     结果:在2016年1月至2022年12月期间发布的总共4,638篇相关文章中,有51篇经过同行评审的文章完全满足审查标准。在所考虑的时间范围内,识别出该领域研究的增加趋势。评审文章中发现的MEG和EEG的使用比例为1:8。大多数评审文章采用图论指标进行分析,聚类系数(CC)、全局效率(GE)和特征路径长度(CPL)比其他指标更频繁出现。

     意义:本研究提供了关于如何利用连接测量进行痴呆症相关电生理信号分析的一般见解,以更好地了解其潜在机制及其鉴别诊断。本文发表在Frontiers in Aging Neuroscience杂志。可添加微信号1996207406318983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群,思影提供脑影像数据分析及课程,如感兴趣也可添加微信咨询)。

简介 

      痴呆症是指一组症状,它们会严重损害受影响个体的记忆、思维和社交能力,以至于干扰日常生活。它是研究最多的神经退行性疾病,吸引了神经科学各个领域专家的关注。最突出的和常见的痴呆症形式是阿尔茨海默病(AD)。其他常见的痴呆症包括血管性痴呆、额颞叶痴呆和路易体痴呆。尽管所有形式的痴呆症逐渐发生,但疾病引起的退化几乎总是在晚年显现,通常从60岁及以上开始。不幸的是,尽管多次尝试提供这种疾病的治疗方法似乎都未能成功,但全球人口正趋向年轻化,这对医疗界来说是一个令人担忧的情况。因此,需要神经科学研究领域各方面的更集中努力,以深入理解导致痴呆症相关疾病发展的潜在机制。这就是为什么痴呆症研究在研究界不断受到关注的原因。

      计算神经科学作为神经科学的重要组成部分,该研究领域一直在使用连接分析作为工具来理解大脑及其功能。因此,连接定义了大脑区域之间或神经元群体之间的物理或统计连接(Fornito et al., 2019; van den Heuvel and Sporns, 2019)。根据其方向,连接分为三种类型:结构性、功能性和有效性连接(Bassett et al., 2018; Park et al., 2018)。结构连接涉及神经元群体或大脑区域之间的物理或解剖连接。相反,功能性和有效性连接涉及跨不同大脑区域记录的生理时间序列之间的统计依赖性。功能性连接是非因果性的,而有效性连接是因果性和方向性的。通常,神经影像学和电生理数据用于制定基于连接的痴呆症分析。神经影像学模态如结构磁共振成像(sMRI)、功能磁共振成像(fMRI)、扩散张量成像(DTI)和正电子发射断层扫描(PET)已被用作痴呆症的生物标志物或基于连接分析的各种痴呆症相关疾病的鉴别器。脑电图(EEG)和脑磁图(MEG)是用于理解痴呆机制以及使用功能和有效连接框架识别各种形式痴呆症的两种常见电生理信号形式。尽管EEG和MEG在空间信息方面不如神经影像学模态丰富,但它们都具有很好的时间分辨率。尤其是EEG,它便宜、便携且易于使用。

       本研究重点是基于功能和有效连接的痴呆症相关电生理信号(MEG和EEG)的分析。研究旨在提供详细的步骤,以更新和整体程序诊断基于MEG和EEG的大脑网络分析方法的痴呆症相关疾病。了解当前电生理信号在计算神经科学中应用的知识现状,特别是在识别和区分分析痴呆症相关疾病方面是本文的一个关键目标。为此,采用系统综述和荟萃分析的首选报告项目(PRISMA),以确保研究结果的可靠性和意义。本文严格遵循PRISMA协议的27项核对清单项目,旨在使研究人员获得准确可靠的证据(Page et al., 2021a)。

      在以下部分中,将介绍研究方法、结果、讨论和结论。

方法

标准 

       本文进行的系统综述基于系统综述和荟萃分析的首选报告项目(PRISMA)程序(Page et al., 2021a,b; Sohrabi et al., 2021)。评审文章的选择基于研究问题和研究策略,以限制研究预期和当前综述研究的影响。使用Cochrane协作方法(Cumpston et al., 2019)来最小化偏倚风险。

研究问题

• RQ1:如何利用计算方法分析电生理信号以理解痴呆症相关疾病的潜在机制?

• RQ2:用于理解痴呆症的电生理信号连接技术有哪些?

• RQ3:如何利用痴呆症相关疾病的电生理信号对二元网络和加权脑网络进行建模? 

• RQ4:电生理信号在识别或检测痴呆症的早期发作方面贡献了多少?

• RQ5:最近用于分析痴呆症相关疾病的脑功能和有效网络的图论指标有哪些? 

• RQ6:鉴于目前文献中所提出的进展,痴呆症相关疾病电生理信号连接分析方面可能存在的研究空白是什么?

研究策略 

    使用ProQuest、IEEE Xplore、Science Direct、Springer Link和PubMed等搜索引擎和数据库进行最近文献的全面搜索,时间范围为2016年至2021年。我们首先使用以下布尔运算符搜索以下关键词:“功能连接”或“脑功能网络”或“连接”或“连接组”和“EEG”或“脑电图”或“MEG”或“脑磁图”和“阈值选择”或“阈值设定”或“阈值设置”和“痴呆”或“阿尔茨海默病”。

研究选择

    此次检索总共产出了4,715篇文章,其中ProQuest为1,855篇,PubMed为135篇,IEEE Xplore为825篇,Springer Link为386篇,Science Direct为1,514篇。在去除重复文章后,剩余4,638篇记录。在筛选文章时,仅考虑同行评审的期刊文章并实施资格标准,最终确定有51篇研究文章符合本研究的标准。研究选择过程的流程图见图1。

图片

图1. 选择过程和方法流程图。

痴呆症类型及其电生理信号采集

      痴呆症相关的疾病有多种类型。痴呆症的早期发作,即早期但异常的认知障碍状态,通常被称为轻度认知障碍(MCI)阶段(Petersen, 2004)。晚期发作的痴呆症通常被认为是不可逆的,包括阿尔茨海默病(AD),它占已知痴呆症的约70%,血管性痴呆(VD),这是第二常见的痴呆症类型,路易体痴呆(DLB)和额颞叶痴呆(FTD)以及混合性痴呆症。尽管还有其他一些疾病与痴呆症相关,但本文的重点不在这些疾病上。痴呆症的最常见风险因素是年龄,随着年龄的增长,尤其是超过65岁时,痴呆症的风险增加,虽然痴呆症不是正常衰老的一部分。其他建议的风险因素包括家族史和唐氏综合征(Livingston et al., 2020)。

      由于晚期痴呆症的临床症状相似且潜在机制重叠,鉴别诊断一直非常困难。这也是各种方法尝试开发其鉴别生物标志物的原因之一。由于电生理信号(EEG和MEG)是广泛研究的鉴别诊断手段,本文后面将介绍最近对各种痴呆症组合的鉴别诊断。

痴呆症相关电生理信号的EEG和MEG采集协议

      脑电图系统一般有两种基本形式,临床EEG设备和消费EEG设备(Ratti et al., 2017)。前者通常用于医疗保健和科学研究,而后者主要用于消费和学术环境。一般来说,EEG设备包括带有导电介质的电极、带有滤波器的放大器、A/D转换器和个人计算机。头皮表面的EEG信号由导电电极捕获,放大器将捕获的信号提高到可以数字化的范围,使转换器将模拟信号转换为数字形式。数字化信号存储并显示在个人计算机上。目前有多种品牌的EEG设备可用于记录高密度EEG(电极数量超过64通道)或低密度EEG(电极数量小于或等于64通道)。

     另一方面,脑磁图系统主要由浸泡在大型液氦冷却装置中的超导量子干涉设备(SQUID)传感器组成,能够检测和放大头皮表面的神经元产生的磁场。MEG设备安装在磁屏蔽室内,以消除干扰。

      痴呆症相关受试者(包括MCI、AD、VD、FTD和DLB)的EEG记录协议主要为睁眼和闭眼状态下的静息状态数据。这是由于痴呆症相关受试者在执行其他认知任务时存在困难,因此文献中普遍采用这种做法。

大脑区域和脑波

     人脑由大脑、小脑、脑干和其他协调人体功能的部件组成(Carass et al., 2011)。大脑是最大的、最显著的部分,包含左右半球的大脑皮层。大脑皮层是大脑的最外层,分为四个不同的叶:额叶、颞叶、顶叶和枕叶(Rosdahl and Kowalski, 2008)。顶叶负责运动、刺激感知和识别;额叶主要负责推理、运动、情感、计划和解决问题;颞叶负责记忆、听觉刺激和语音识别;枕叶协调与视觉刺激相关的动作。然而,功能集成和分离的过程是通过不同大脑区域之间的信息传递实现的(Churchill et al., 2016)。

      在大脑的网络层面,不同皮层区域神经元群体的电活动同步会产生脑波。这些脑波通常分为五大类,但也有其他分类方式(Teplan, 2002; Al-Kadi et al., 2013)。最常用的脑波命名方法基于五个频带:δ波(0.5-4 Hz)、θ波(4-8 Hz)、α波(8-13 Hz)、β波(13-30 Hz)和γ波(>30 Hz)(Teplan, 2002; Kumar and Bhuvaneswari, 2012; Jackson and Bolger, 2014)。脑波的详细分类、频率范围、描述和其他特性见表1。

表1. 脑波的分类及其描述(Kumar and Bhuvaneswari, 2012; Ismail et al., 2016; Beppi et al., 2021)。

图片

连接性分析

      连接性通常是用来描述理解和描述复杂系统的概念,这些概念频繁出现在神经科学、地貌学、系统生物学、生态学和社会网络科学等领域(Turnbull等,2018)。连接性是指系统中实体之间的连接程度。实际上,连接性在理解和描述复杂系统方面带来了科学变革。特别是,大脑被认为是自然界中最复杂的系统之一,因此,连接性已成为理解大脑结构关系并将其功能映射到各个区域的重要工具。因此,神经科学中的大脑被理解和描述为由神经元、皮层区域或皮层区域组成的系统,这些实体之间的关系由连接性定义。

      在神经科学及其他适用连接性概念的研究领域中,大致有三种类型的连接性。这些是结构连接性(SC)、功能连接性(FC)和有效连接性(EC)。结构连接性测量网络的配置或排列水平,这意味着SC量化了网络实体之间的实际物理连接。功能连接性描述了网络实体之间的统计关系或连接性。有效连接性是指一个网络实体(尤其是在神经科学中,在突触水平或群体水平的神经元)对另一个网络实体的影响(Friston,2011),或简而言之,是网络实体之间的因果关系。

       在过去的几十年里,连接性已成为脑网络科学和计算神经科学中揭示许多概念的重要工具。许多在脑机接口(BCI)、情绪识别和脑疾病识别方面的研究都采用了连接性分析,因为该概念看起来很有前途,并且仍然是神经影像学和电生理数据分析的最佳选择之一。重要的是,由于功能连接性和有效连接性都依赖于时间序列中的大脑活动,因此在电生理数据分析中得到了广泛应用。因此,具有非常高时间分辨率的EEG和MEG在这种分析中反映了最佳的神经和动态反应。考虑到脑网络科学领域,FC和EC测量分别是皮层或头皮区域对之间的统计和因果关系。这些测量方法被分类为基于信息的、线性或非线性技术。它们有时被分类为时域或频域分析,实际上还有其他几种分类标准。表2展示了过去5年中,广泛用于痴呆相关疾病分析的电生理信号的FC/EC的最成熟方法的概述。

表2展示了在过去5年中,广泛用于痴呆相关疾病分析的电生理信号的功能连接性(FC)和有效连接性(EC)方法的概述。

图片

     表2中列出的连接性测量的属性并不相同,因此它们各有优点和缺点。遗憾的是,没有选择最佳技术的黄金法则,因此为特定框架选择连接性测量方法非常具有挑战性。一个普遍的经验法则是:当对来自神经生理状态的单一信号的特征感兴趣时,以及当不需要过多关注个体内认知状态的敏感性时,采用单变量分析技术。此外,当在分析中联合处理不同的神经生理状态时,通常采用多变量分析技术。当对噪声容忍度较低或几乎没有时,采用线性连接性测量,而非线性测量通常用于检测大脑活动中的非线性。涉及信号相位分量的分析被认为比涉及信号幅度分量的连接性分析更敏感于大脑状态的检测。图2展示了从EEG和MEG构建和分析脑网络的总体框架。

图片

图2. 从电生理信号(EEG和MEG)构建和分析脑网络的一般框架。

EEG和MEG通道密度对连接性分析的影响

      在基于电生理信号的脑功能连接性分析流程中,必须做出的一个选择是模态(EEG/MEG)的密度选择。传统上,EEG在各种脑成像模态中被认为具有优秀的时间分辨率。其相关的空间分辨率较差一直是一个关注点。为了提高EEG的空间分辨率,采用了高密度EEG(HD-EEG)蒙太奇,其空间采样率高于标准的10-20低密度(LD-EEG)蒙太奇。HD-EEG蒙太奇所需的最小EEG电极数通常为64个通道(Seeck等,2017),通常,随着电极数量的增加,空间分辨率会逐渐增加,但增量会逐渐减小(Sohrabpour等,2015)。然而,由于设备采购成本、实验设置、分析和解释时间,HD-EEG在包括痴呆相关障碍的许多应用中受到限制(Chu,2015)。

       与EEG的情况不同,MEG传感器的数量在各种应用中并不是一个严重的问题。虽然EEG传感器直接放置在头皮表面,但MEG传感器则放置在受试者头部周围,而不是接触头皮(Singh,2014)。然而,已证明MEG传感器离大脑越近,所提供的空间分辨率和神经元电流信息越好(Boto等,2016)。在这方面,所包含文章中使用的EEG和MEG传感器数量得到了确认。

时间窗长度对电生理信号连接性分析的影响

       另一个可能影响基于EEG和MEG信号的功能网络拓扑结构的方法学考虑是时间窗长度的选择。通常,EEG信号的功能连接性分析的时间窗长度范围从1秒到几秒不等。与时间窗长度选择相关的不一致性常常阻碍各种研究结果之间的客观比较。关于EEG和MEG的时间窗长度的各种不确定性之一是:为了获得最佳结果,在连接性测量分析中所需的时间窗长度并不相同。例如,在Fraschini等人(2016)的研究中,使用PLI和AEC研究了时间窗长度对估计的EEG功能连接性和脑网络组织的影响。结果发现,随着时间窗长度的增加,功能连接性减少,并在12秒和6秒时分别达到PLI和AEC的稳定性。为了识别在痴呆相关障碍功能连接性分析中常用的时间窗长度,研究中包含的所有文章中使用的时间窗长度得到了确认。

图论方法

       在过去的二十年里,图论在神经生理学(尤其是电生理数据)领域的计算神经科学中得到了广泛关注。这一源自数学的研究领域已被应用于神经系统疾病的诊断、情感计算和脑机接口。然而,我们这里的重点是强调其在计算认知神经科学中,特别是在痴呆相关障碍诊断中的最新应用。

       一般而言,图论将数据表示为由一组节点或顶点(V)通过边集(E)连接在一起的图。因此,一个图G被定义为G(V, E, A),其中A是邻接矩阵,它描述了图中顶点集V之间的关系。因此,研究人类大脑网络涉及将大脑区域(可以是皮层区域或头皮上的EEG/MEG传感器位置)表示为节点,并将节点集之间的关系(无论是物理的、统计的还是因果的)表示为边。图可以是加权的或非加权的。加权图是指边被分配了权重,使得边的权重对应于其大小。相反,非加权图或二元图是指两个节点之间是否存在边,如果其值为“1”则存在边,如果其值为“0”则不存在边。图可以是有向的或无向的。有向图是指两个节点之间的关系是单向的。无向图是指两个节点之间的关系是双向的。图3中展示了简单二元有向和无向图的示例,以作说明。

图片

图3. 包含13个节点和19条边的简单图表示。

基于电生理信号的功能性大脑网络构建和分析框架

      基于电生理信号的痴呆相关障碍的功能性大脑网络的构建和分析框架包括以下部分将详细描述的程序。特别强调文献中最近使用的方法,目的是为领域内的非专家和半专家研究人员提供有用的步骤。

节点/顶点定义

       从电生理和其他神经生理数据中形成大脑功能网络的第一个步骤通常是指定网络节点/顶点。在大脑网络中,节点是皮层区域或头皮表面的传感器位置。大脑功能网络的结果和分析在很大程度上取决于网络节点的定义方式。在EEG和MEG数据中定义节点有两种不同的方法:第一种方法是使用传感器/通道或通道名称。这种方法依赖于EEG/MEG传感器放置的标准定义,通常用于EEG基于大脑功能网络的构建和分析。这种方法的缺点是与体积传导相关的问题会降低数据的空间分辨率。第二种方法是源重建方法。这种方法依赖于标准的大脑感兴趣区域定义(使用标准大脑图谱)。它包括在预处理和将信号分段为时间段后通过解决逆问题计算源空间,以便使用软件采集系统决定电极在三维空间中的位置。解决逆问题涉及两个主要步骤,即:确定要使用的头模型(特别是现实头模型)和在头模型中进行源定位评估以确定偶极源位置。然后进行时间过程的重建。用于源重建的各种算法已在免费软件如EEGLAB、Brainstorm、Fieldtrip、sLORETA和MNE中实现。

      总的来说,为了进行有效分析,必须从头皮表面记录高质量的信号。特别是,对于痴呆相关状况的受试者,监控起来比较困难,因此研究人员在数据采集或记录过程中必须格外细心,以获得非常准确的信号。在决定节点定义方法后,必须对电生理数据进行滤波、去噪,并与各种污染伪迹(如眼动和肌肉伪迹)分离。EEGLAB、Brainstorm和Fieldtrip是常用于电生理数据预处理的开源软件。

边的定义

      在构建和分析大脑功能网络时,边的定义是一个非常关键的步骤。在大脑网络中,边表示皮层区域或头皮传感器位置对之间的连接。在网络构建过程中,边通过使用结构、功能和有效连接度量来形成,具体取决于网络的类型。由于本文不涉及结构网络,重点将放在功能和有效网络的边的定义上,前一部分已讨论过。在选择和实施适当的连接度量后,边可以是有向的或无向的。给定一个多通道EEG/MEG,应用连接度量会形成一个连接矩阵A。如果网络中指定的节点数量为N,连接矩阵通常是N×N对称矩阵,其中矩阵的行和列表示节点编号,即Aij表示通道i和j或区域i和j之间的统计关系。

      在边的定义中,直接从连接度量获得的连接矩阵根据网络的类型转换为图的邻接矩阵。虽然在痴呆相关大脑功能网络的构建和分析中,使用非加权网络非常普遍,但它也存在方法学问题,因此也考虑使用加权网络和其他形式的大脑功能子网络,如最小生成树(MST)网络和最小连接组件(MCC)网络。构建非加权大脑功能网络通常涉及确定包含和排除边界,通过选择适当的阈值来选择边作为网络的一部分。文献中提出了许多适当的阈值选择方法。这些方法可以分为两大类:任意选择和数据驱动选择。

      任意/随机值选择:这包括通过随机选择一个常数值来选择阈值,只有当边的值高于随机选择的阈值时,它才被视为真正的边。这种方法的问题在于,所构建的网络密度因受试者而异,实际上,某些受试者的网络是连接的,而其他受试者的网络是断开的。这使得跨受试者或组进行网络比较变得困难,并可能显得有偏差。

     数据驱动阈值选择:这包括通过开发技术或使用特定标准选择阈值。此类方法包括:

     1.稀疏阈值/基于边密度的阈值选择:这涉及通过固定边密度、网络的平均度或选择完全连接网络中总可能连接数的一定固定百分比来选择阈值。在这种情况下,受试者或组之间的实际阈值不恒定。因此,与随机值选择相比,网络的连通性预计会得到更好的保留。然而,使用这种方法也不能保证构建的网络中不存在断连。因此,使用这种方法进行网络分析也不完全没有偏差。

     2.基于统计的阈值选择:这种方法涉及使用完全连接网络中所有可能连接的特定统计量来选择阈值。示例包括在特定置信区间内保持连接(通常使用95%置信区间)、选择连接值的中位数作为阈值、以及选择高于特定置信水平的连接。然而,这种方法也不能免于网络比较偏差的问题。

      3.基于最大化全局成本效率的阈值选择:这种方法依赖于使用网络的基本属性——全局效率。在这种方法中,计算网络成本(即网络中边的总和与完全连接网络中的边的总数的比值),全局效率与成本值的差异即为全局成本效率。使用这种方法的阈值选择涉及选择在网络中全局成本效率最大时的任意阈值。与前述方法一样,这种方法也不能保证跨组受试者的网络测量没有偏差,网络的连通性也不自动得到保证。

      4.通过保持巨型组件选择阈值:这种阈值选择方法基于保持尽可能多的边,以保持网络中至少99%的节点连通性。保持巨型组件的阈值选择是一种基于渗透的方法,例如保持维护巨型组件连通性的最低阈值。虽然这种方法不太常见,但其主要优势在于直接从连接矩阵获得的原始网络的拓扑完整性。然而,这种方法也不能保证消除伪网络。对于有效连接的网络构建来说,这种方法可能问题更多,因为连接矩阵通常是稀疏的。

      尽管早期的阈值选择方法存在缺点和差异(如Jalili(2016)所研究),但它们通常用于非加权/二值脑网络的构建。然而,由于这些技术相关的方法学问题,加权网络的使用已经被采用(Franciotti et al., 2019)。然而,使用加权网络也无法避免阈值二分法,因为仍然存在需要消除的虚假连接值。因此,在加权网络分析中也采用了一些早期的阈值选择标准来去除虚假连接(Chen et al., 2019)。

       此外,很明显,加权网络的使用并不能完全确保网络分析免受与阈值选择偏差相关的方法学问题的影响。因此,许多大脑网络分析人员采用最小生成树(MST)进行无偏网络分析和比较(Jalili,2016;Yu等,2016;López等,2017;Das和Puthankattil,2020;Požar等,2020)。生成树是一个无环网络组件/子网络,其中所有网络节点都通过最少可能数量的边连接起来。通常,对于N节点图,图的生成树用(N − 1)条边连接N节点,如图3所示。由于图通常根据图的大小有很多生成树,成本最低的生成树称为最小生成树。在大脑功能网络中,最大生成树通常被认为是MST。因此,MST被认为固有地携带了原始网络属性,因此适合用于无偏的网络分析和比较(Tewarie等,2015)。然而,基于最小生成树的网络并非没有其缺点。生成树通常是无环的,因此使用最小生成树无法计算如聚类系数和传递性等涉及循环的图度量。为了提高能力并尝试解决MST相关问题,Dimitriadis等(2019)提出了正交MST(OMST)的使用,其中MST依次被提取,直到满足给定条件为止。

       由于前述与非加权、加权和MST相关的问题,提出了最小连接组件(MCC)的概念,以客观地生成可客观分析和比较的网络。MCC是一种特殊类型的生成子图,它以最少的最大加权边连接图中所有节点。对于一个具有N节点的图,至少有(N−1)条边,最多有(N(N−1)/2)条边。在Vijayalakshmi等(2015)和Jalili(2016)中,MCC被提议并用于定量测量认知活动和检测认知障碍。然而,MCC也可能无法完全免于无偏网络比较,因为不同受试者组的MCC网络密度可能不恒定。

大脑网络的图论分析

      在构建了非加权、加权、MST或MCC网络后,使用图论度量来量化构建的网络的拓扑结构。对于痴呆相关障碍,拓扑量化用于区分痴呆的发病和各种类型的痴呆障碍。大脑网络分析中使用的基本图论度量分别是功能性分离和整合的度量。常见的功能性分离度量包括聚类系数、网络的传递性和局部效率。同样,路径长度和全局效率是常见的功能性整合度量。还提出了其他常见的度量来评估大脑网络的局部和全局属性,实际上,已经开发了各种工具包来分析和可视化网络的拓扑属性(Rubinov和Sporns,2010;Xia等,2013;Wang等,2015;Mijalkov等,2017)。常用于痴呆相关障碍分析的常见图度量及其基本定义如下总结:

1.局部度量:这些是直接在图的节点级别计算的图度量。需要注意的是,有些度量可以在局部和全局级别使用,因此,这些度量仅在全局度量标题下讨论。

      连接级别度量(CLM):这是一个图度量,用于量化两个节点同步化的差异。它通过测试任意两个节点的连接强度的显著性来确定显著连接(Duan等,2020)。

     局部效率(LE):这是在给定节点的最近邻之间传递信息的平均效率(Jalili,2017;Cai等,2018)。

     度(K):这是网络中一个节点/顶点的总连接数(Li等,2019)。

      节点中介中心性(NBC):节点的中介中心性是通过一个图中的最短路径数量。这指示了一个节点在信息流中的影响力(Jalili,2016;Abazid等,2021)。

      节点强度(NS):节点强度通过将链接的权重总和与相邻节点连接来衡量节点对整个网络的贡献(Hata等,2016;Duan等,2020)。

      参与系数(PC):这是一个度量,根据度分布量化节点在不同网络层中的参与情况(Cai等,2020)。

      多样性(Vers):这是一个衡量特定节点与网络社区密切关联的度量(Duan等,2020)。

2.全局度量:这些是图级别而非节点级别计算的图度量。常用的全局图度量如下总结:

      攻击容忍度(ATol)/网络弹性:这是一个度量,衡量在删除/攻击一定比例的枢纽节点时网络维持其局部和全局效率的能力(Afshari和Jalili,2016;Duan等,2020)。

同配性(Ac):这是网络抵御随机或内部故障/攻击的弹性(Jalili,2017)。也表示为节点与度数相似的其他节点连接的容易程度。

      特征路径长度(CPL):路径长度是测量网络功能性整合的最重要和最常用的图度量之一。它是网络中所有可能节点的最短路径长度的平均值(Vecchio等,2017;La Foresta等,2019)。它与网络的功能性整合成反比。

       聚类系数(CC):这是大脑网络分析中最重要的基本图论度量之一,用于评估网络的功能性分离。它衡量节点在图中形成簇的程度(Chen等,2019;Duan等,2020)。

      连接密度指数(CDI):这是一个图中总连接数与完全连接图中最大可能连接数的比率(Dattola等,2021)。

      特征值比/同步性(EigR):这是图的最大特征值与图的Fieldler值/代数连通性的比率。从理论上讲,它是衡量网络同步性的度量(Jalili,2017)。

      全局效率(GE):这是用于量化功能性整合的一个重要网络度量,即信息传递的效率(Mammone等,2018a;Franciotti等,2019)。它与图的平均最短路径长度成反比,路径长度越短,网络中的信息并行传输越快,信息整合越好。

      图复杂性指数(GCI):这是用于衡量网络复杂性的度量。GIC在“0”和“1”之间变化,值越大,网络越复杂(Wang J.等,2016;Yu等,2018)。

      模块化指数(Mind):模块化指数是根据边的统计排列来衡量网络结构和拓扑的度量(Jalili,2016)。

      Randic指数(Rind):Randic指数量化网络的连接程度。它与网络的连接程度成反比,完全图/网络的Randic指数最小(Dattola等,2021)。

      小世界性(SW):小世界性是网络的归一化聚类系数与归一化路径长度的比率。它是评估网络功能性分离的重要度量,并传达了全局和局部网络特征的综合信息(López等,2017;Cai等,2018)。

     传递性(Trans):传递性是网络聚类系数的全局度量,它被集体归一化,使其不受低度节点的影响(Jalili,2017)。

     脆弱性(Vuln):脆弱性是由于节点从网络中删除而导致的连接损害的度量(Wang J.等,2016)。

最小生成树度量

       如前所述,MST网络被提议用于大脑网络分析,主要是为了避免与阈值选择相关的方法学瓶颈,并实现无偏的网络比较。由于MST的拓扑结构与父网络/图的结构有些不同,其属性使用独特的图论度量来衡量。以下是MST中最常用和最新使用的图度量:

     节点度数(Deg):树中一个节点的度数是指在给定树中与该节点相邻的邻居数量。MST中的最大节点度数总是特别重要(Požar等,2020;Youssef等,2021)。

    树的直径(Diam):树的直径是树中任意两个节点之间的最大距离(Das和Puthankattil,2020;Youssef等,2021)。

     树的离心率(Ecc):树的离心率是指某个节点到其最远节点的距离(Požar等,2020;Youssef等,2021)。

     中介中心性(BTC):中介中心性,类似于图的中介中心性,衡量的是一个节点位于两个其他节点路径之间的程度(Briels等,2020b;Youssef等,2021)。树的最大中介中心性通常用于表征树。

    叶片分数(LFrac):这是树中叶片数量与可能的最大叶片数量的比率(Das和Puthankattil,2020;Youssef等,2021)。

     树层级(Hier):树层级是一个度量,衡量树中直径减少与过载预防之间的平衡(Požar等,2020;Youssef等,2021)。

    不相似性指数(Dind):不相似性指数是一种度量,用于衡量两棵树之间拓扑差异的程度。基本上,它量化了将一棵树转换为另一棵树所需的信息量(Požar等,2020)。

     生存比率(SuR):MST的生存比率用于量化MST与参考之间的相似性,方法是取MST网络中公共连接与可能连接总数的比率(Yu等,2016)。

     平均权重(Wei):这是树中所有连接的平均权重。其工作方式与传统网络的连接水平度量相同(Yu等,2016)。

     度数相关性(Dcorr):树的度数相关性衡量节点连接到具有可比/相似度数的节点的趋势。换句话说,它衡量树中节点的相似程度(Yu等,2016;López等,2017)。

     树效率(TEff):树效率表示树的直径与最低可能值的接近程度(Yu等,2016)。

     树分歧(Div):树分歧,也称为kappa,是衡量树中度数分布广度的度量(Yu等,2016;Požar等,2020)。

痴呆相关条件的鉴别

      在大多数情况下,痴呆相关障碍的电生理信号连接分析的最后阶段是分析中涉及的受试者条件的鉴别或识别阶段。这是因为这种分析的最终目标是实现疾病的鉴别诊断,以帮助开发治疗措施。之前考虑了两种不同的方法来实现这一目标,以下将介绍这两种方法:

       统计分析:如前所述,大脑网络的构建几乎总是伴随着使用图论度量进行的网络量化。计算图论度量后,应用统计方法比较组间网络属性,以识别可能的显著差异。有时,从电生理数据获得的真实大脑网络的结果与理论网络(如随机、格状或无标度网络)进行统计比较。评估痴呆相关障碍不同组之间的统计差异取决于数据集的大小(考虑的受试者数量或样本数量)和样本的基础分布。正如大多数其他应用统计分析工具的情况一样,95%的置信区间通常用于使用参数统计方法(如单因素方差分析(ANOVA))进行组间痴呆组的鉴别。当数据未能呈正态分布时,非参数统计方法(如Kruskal-Wallis方法(Kruskal和Wallis,1953;Corder和Foreman,2011)、置换统计和引导法(Moore,1999))也被广泛认为是合适的。

      学习方法:基于脑网络框架的机器学习和深度学习方法在痴呆相关障碍的分类和识别中持续获得关注。在基于条件分类之前,特征提取技术用于挖掘有用的特征。同样,深度学习方法(如前馈神经网络)也被用于基于痴呆相关条件的分类。表3总结了最近使用学习技术对痴呆相关障碍的电生理基础功能/有效脑网络的分类框架。

表3.最近使用各种功能连接特征对痴呆症障碍进行学习分类的研究

图片

结果

研究选择

 根据选择标准,共选择了51篇文章,其中25篇(总数的49%)发表于2016年至2019年,其余(51%)在过去的3年内(2020年至2022年)发表(见图4A)。因此,本研究展示了使用电生理信号对痴呆症相关障碍的大脑功能网络分析研究领域的增长趋势。预计未来的研究将进一步增长,超越当前的趋势。

图片

图4 使用连接度量的痴呆症相关障碍研究的频率分布,(A) 评审研究的年度分布和 (B) 连接度量的使用频率分布。

连接分析

      EEG和MEG通道密度及被调查文章的时间段长度

在所考虑的文章中,发现所有使用MEG信号的七篇文章均使用了306个通道,而其余44篇使用EEG信号的文章中有27.27%使用了高密度EEG(HD-EEG)设置,其余则使用低密度EEG(LD-EEG)设置。同时,最大比例(29.54%)的被审查文章使用了19个电极,这种选择除了分析便利和设备采购成本外,没有明确的理由。

      同样,对于信号时间段长度的选择,发现被审查文章中对于痴呆症相关障碍连接性分析的时间段长度选择没有特定的考虑。所调查文章中使用的各种通道密度和时间段长度在表4中列出以供参考。

表4. 被审查研究的数据类型、通道密度、时间段长度及主要发现。

图片

图片

图片

研究质量

      研究证据的强度是根据《Cochrane系统评价诊断测试准确性指南》(Smetana等,2012)进行评估的。评估的领域包括随机序列生成、选择偏倚、执行偏倚、失访偏倚、检测偏倚和报告偏倚。通过评估各研究的证据质量,仔细检查了所包含研究中数据的完整性和缺失情况。因此,将研究分为三组(高质量、中等质量和低质量,分别对应低风险领域数量≥4、=3、≤2),其中高质量研究被认为偏倚低,中等质量研究被认为标准不明确,低质量研究被认为偏倚高。在考虑的51项研究中,有34项被归类为高质量,14项被归类为中等质量,三项被归类为低质量,如图5所示。

图片

图5. 使用Cochrane协作工具评估偏倚风险。

     在所有考虑的51篇文章中,有14篇文章(占总研究文章的27.5%)分析了{AD, NC}组。有八项研究(占总研究文章的15.7%)考虑了{AD, MCI, NC}组,而六篇文章(占总研究文章的11.8%)分析了{MCI, NC}组。其他考虑的痴呆症相关疾病组如图6所示。稳定性轻度认知障碍(sMCI)和进展性轻度认知障碍(pMCI)组在三篇研究文章中进行了研究。在Briels等(2020a)中,使用功能连接性评估了谷氨酰胺环化酶抑制剂(PQ912)在早期AD患者中的疗效。同样,Park等(2022)研究了经过24周多领域生活方式干预计划后,预防认知障碍的高风险老年个体的QEEG神经生理变化。

图片

图6. 研究的痴呆症相关疾病组。

图论指标和最小生成树指标

      如图7A所示,聚类系数(CC)、特征路径长度(CPL)和全局效率是最常用的图论度量。聚类系数被19篇文章使用,全局效率和特征路径长度分别被15篇和14篇文章使用。小世界性(SW)、局部效率、节点中介中心性和节点度数相对于其他指标也被频繁使用(见图7)。同样,最常用的最小生成树网络指标包括树的中介中心性(BTW)、树的度数、树的直径和叶子分数,这些指标在五篇研究文章中使用。离心率(Ecc)和树层次结构在四篇文章中用于生成树网络量化,如图7B所示。

图片

图7. 图论度量的使用情况,(A)图论指标的使用,(B)生成树指标的使用。

讨论

       在过去的五年中,关于痴呆相关疾病的研究取得了许多有趣的发现,这些发现主要是通过电生理信号的连接分析得出的。对痴呆症疾病的连接和脑网络分析的研究引起了关注,预计未来几年会吸引更多的兴趣,因为患有痴呆症的人数不断增加。目前,全球大约有5500万人患有痴呆症,其中约60%的患者来自低收入和中等收入国家(世卫组织,2021年)。这是电生理信号(尤其是脑电图(EEG))在早期发现痴呆症和后期鉴别诊断中的重要原因之一。由于世界各国老年人口比例增加,预计2030年将有7800万人患上痴呆症,2050年将达到1.39亿人(世卫组织,2021年)。对这一领域研究兴趣的上升促使了本次综述。经过严格的筛选过程,共系统回顾了51篇符合研究标准的同行评审文章,并在表4中总结了所包含文章的主要发现。

       总体而言,使用MEG作为电生理信号进行分析的文章约占14%,而使用EEG进行分析的研究约占86%。这可能归因于EEG信号相对于MEG信号的相对可获得性,因为EEG的安装成本和其他后勤费用较低(Singh, 2014)。同样,大多数研究集中在识别阿尔茨海默病(AD)和轻度认知障碍(MCI)组,尽管其他类型的痴呆症也在增加。这是因为AD占所有痴呆症的比例至少是其他痴呆症总和的两倍(世卫组织,2021年)。除了对AD的关注,许多研究还重视早期痴呆(MCI)的发现。人们认为无法开发出治疗痴呆症的疗法是由于其形成的不可逆机制,因此许多研究人员提出从MCI阶段解决这一问题。然而,很难区分正常衰老和早期/MCI阶段的痴呆症。这就是为什么对正常衰老和MCI阶段的鉴别诊断越来越感兴趣的原因。综述中的一项研究评估了一种抗痴呆药物(谷氨酰胺环化酶抑制剂PQ912)的疗效,发现用PQ912治疗早期痴呆患者后,α频段的功能连接性增加(Briels等,2020a)。然而,需要对大样本人群进一步验证这项研究。此外,发现大多数综述文章集中在AD作为最普遍的痴呆症形式。然而,大多数痴呆症有重叠的临床症状,因此有必要在该领域的专家开发用于鉴别诊断的框架。

      根据痴呆症相关研究的趋势和治疗措施的发展,最有前途的方向是早期识别未来可能发展为痴呆症的患者。这种鉴别可能性将确保作为解决似乎不可逆的疾病的二级预防(Weintraub等,2018年)。然而,当前研究表明,基于电生理信号的功能和有效连接性分析在这方面还不足。在回顾的41篇文章中,只有两篇文章(每种EEG和MEG各一篇)专注于识别稳定的轻度认知障碍和进展性轻度认知障碍(见图6)。

     关于痴呆症相关疾病的连接性分析,综述研究采用了不同类型的连接性进行分析。大多数研究采用了功能连接工具(约占总连接性使用的85%),而有效连接工具则占总连接性使用的约15%。由于不同的度量标准用于评估电极对/感兴趣区域对之间的功能连接,大多数研究文章采用了使用信号相位信息的度量标准。这可能归因于电生理信号的相位信息比振幅信息对神经状态更敏感。了解所有形式的功能和有效连接性度量的优缺点非常重要。一些度量对体积传导高度敏感,而一些度量则相当稳健。在选择用于分析的特定度量之前,必须了解度量的线性以及度量的领域。表2提供了过去五年内常用度量的详细信息,以便轻松访问。

       由于将连接矩阵转换为脑网络在痴呆症疾病的脑网络分析中至关重要,阈值选择在连接网络转换过程中起着重要作用。阈值选择往往对完整分析的结果有显著影响。一直以来,该领域的大量文献表明,阈值选择存在两极分化,没有绝对接受的方法。最近,提出了数据驱动方法,这些方法似乎比以前常见的任意/随机选择更具优势。任何数据驱动方法的基本标准应包括维护连接性、在相同分析中的网络组之间形成可比的网络密度,以及形成具有小世界特性的网络等。不幸的是,没有已知的方法同时考虑这些标准,这也是MST和MCC等方法在使用功能连接的电生理信号一般脑网络映射中获得前所未有关注的原因。因此,需要开发一种考虑上述标准的阈值选择框架。基于连接矩阵特征值的阈值选择开发可能在这方面非常有趣。

      为了自动分类痴呆症相关疾病,传统的机器学习分类器(如支持向量机(SVM)、随机森林、线性判别分析和k近邻算法)以前已被用于基于电生理信号对各种神经状态进行分类或识别。在过去十年中,深度学习非常流行,并且凭借其执行自动特征提取和预测或分类的强大功能,已经在不同领域找到了各种应用。用于功能/有效脑网络分类的常用深度学习技术之一是图卷积网络(GCN)。GCN已成功应用于情感预测、脑机接口和其他应用(Lun等,2020年;Zhong等,2020年;Chen等,2021年)。然而,在基于电生理的脑网络分析中,各种深度学习技术(包括GCN)的优势未得到充分利用。因此,建议采用GCN、Transformer网络和其他深度学习技术,通过复杂网络理论框架实现这些疾病的自动识别。

结论

       本文展示了在过去五年中基于电生理信号的痴呆症相关疾病功能和有效脑网络研究的增加趋势。文章主要关注两种电生理信号:EEG和MEG,尤其是由于它们的高时间分辨率以及EEG的采集成本,使这些模式成为诊断痴呆症的有前途的工具。大多数综述的文章使用静息状态(睁眼或闭眼)的电生理数据。尽管在认知任务协议期间记录痴呆症相关受试者的数据可能很困难,但设计和实现这些协议可以提高我们对痴呆症脑网络潜在机制的理解。本文概述了迄今为止使用的各种连接性度量及其各自的属性,以指导选择使用。还讨论了使用阈值选择方法将连接矩阵转换为脑网络的过程,并详细介绍了最近提出和采用的技术。并对开发无偏阈值选择的重要标准提出了建议。

      图论指标作为痴呆症相关疾病功能和因果脑网络分析的重要组成部分也进行了综述。发现聚类系数(CC)、全局效率和特征路径长度(CLP)在痴呆症相关疾病分析中更为常用。还确定了最近基于功能/因果脑网络特征对痴呆症相关疾病分类使用的各种机器学习技术。由于在该领域深度学习技术的利用率较低,因此建议利用其全部潜力,通过复杂网络理论框架实现痴呆症相关识别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值