基于脑电图记录的大脑功能连接和有效连接

 人脑的功能连接和有效连接,分别表示皮质区域之间的统计依赖性和定向信息流,对研究大脑内在网络及其功能机制做出了重要贡献。由于越来越多的证据表明,大脑连接性研究可以帮助我们更好地理解各种神经系统疾病,因此近期许多脑电图(EEG)研究都在致力于大脑连接性的建模和估计。然而,目前缺乏一个全面且最新的综述来回顾基于EEG的大脑连接性研究,特别是在可视化选项和相关机器学习应用方面,这些技术有望转化为有用的临床工具。

     本文回顾了近年来基于EEG的功能连接和有效连接研究,涵盖了估计方法、可视化技术以及与机器学习分类器相关的应用。文章从多个维度探讨了这些方法,如线性或非线性、参数或非参数、基于时间、基于频率或基于时频等。随后,文章对大脑连接可视化方法进行了创新性的综述,将其分为热图、数据统计和地形图等类别,旨在探索不同脑区间连接性的变化。最后,文章讨论了相关研究目前面临的挑战,并提出了未来研究的路线图。本文发表在Human Brain Mapping杂志。 (可添加微信号1996207406318983979082获取原文,另思影提供免费文献下载服务,如需要也可添加此微信号入群,原文也会在群里发布)。

1 引言

      在过去几十年中,许多研究者通过分析无创脑信号来理解大脑活动。头皮脑电图(EEG)每年吸引力不断增加,导致相关出版物数量不断增长(Van Diessen等,2015)。一方面,为了从EEG记录中提取隐藏信息,研究者们采用了各种传统的数字信号处理方法,如独立成分分析(ICA;van Mierlo等,2014b;Tafreshi, Daliri, & Ghodousi, 2019;van Mierlo等,2014a;Vecchio, Miraglia, Bramanti, & Rossini, 2014)、功率谱密度(PSD;Erra, Velazquez, & Rosenblum, 2017;Ko, Yang, & Sim, 2009;Lias, Sulaiman, Murat, & Taib, 2010)、离散小波变换(DWT;Amin, Yusoff, & Ahmad, 2020;Cvetkovic, Derya, & Cosic, 2008;Dhiman & Saini, 2014;Ibrahim, Djemal, & Alsuwailem, 2018;Vijay Anand & Shantha Selvakumari, 2019)等。这些方法通常关注单个EEG通道,本质上是单变量方法,或者是盲信号分离。这些方法可能没有考虑不同EEG信号之间的相互通信。另一方面,大脑连接性研究受到越来越多的关注。越来越多的证据表明,大脑连接性可以揭示不同脑区的功能和它们之间复杂的皮质间通信(Babiloni等,2005;Sakkalis,2011;Tafreshi等,2019;van Mierlo等,2014a),这有助于更好地理解许多神经系统疾病和情绪状态。如图1所示,近年来与"EEG和大脑连接性"相关的出版物数量持续增长,特别是2012年之后。

图片

图1 2005-2020年期间使用关键词"EEG和机器学习"或"EEG和AI"(趋势1)以及"脑连接性和EEG"(趋势2)在PubMed搜索得到的每年发表文章数量

      大脑连接性可以细分为神经解剖(或结构)连接性、功能连接性和有效连接性。神经解剖连接性指的是微观神经元尺度上的结构链接,如突触或纤维通路(Sakkalis,2011)。磁共振成像(MRI)和弥散张量成像(DTI)是公认的揭示大脑结构连接性的技术,具有相对较高的空间分辨率(Clayden,2013;Fan等,2016;Mohanty, Sethares, Nair, & Prabhakaran, 2020),而EEG无法直接揭示结构连接,它用于估计功能和有效连接性。与MRI相比,EEG提供更高的时间分辨率,因此可以在更短的时间尺度上估计连接性。同时,EEG能够在较低成本下早期检测影响大脑网络的病理生理过程中的异常,甚至在临床症状出现和MRI可见结构改变之前(Marzetti等,2019;Sadaghiani, Brookes, & Baillet, 2021)。功能连接性被定义为空间上相距较远的神经生理区域之间的统计相互依存性(Friston,2011),通常通过相关性、相干性和信息论来测量(Cao等,2021;Colclough等,2016;Marzetti等,2019;Sarrigiannis等,2015;Shan等,2021;Wang等,2014;Zhao等,2018)。就有效连接性而言,它表示一个神经区域对其他区域的因果影响(Astolfi等,2004;Tafreshi等,2019),通过将EEG和脑磁图(MEG)等成像技术与相互连接的大脑区域的数学模型相结合(Friston,2001;Ponten, Daffertshofer, Hillebrand, & Stam, 2010)。与只处理统计关系的功能连接性不同,有效连接性倾向于揭示神经区域之间相互作用的潜在机制,它是动态的(事件依赖的),并依赖于连接模(Friston,2011;He, Billings, Wei, Sarrigiannis, & Zhao, 2013;Seth, Barrett, & Barnett, 2015)。人们认为大脑连接性蕴含着巨大的潜力,可以帮助我们理解大脑网络。关于是否能避免传感器级大脑连接性估计中的体积传导效应存在争议,这是由于神经兴奋到表面测量的传输(He等,2019)。一些研究者更倾向于在解决反问题后在源空间计算连接性(Moezzi & Goldsworthy, 2018;Palva等,2018;Supp, Schlögl, Trujillo-Barreto, Müller, & Gruber, 2007)。

      此外,基于从信号处理和大脑连接性分析中提取的各种特征和生物标志物,近年来使用机器学习(ML)方法进行EEG分类的已发表文章数量显著增加(图1),如支持向量机(SVM)、随机森林(RF)和K近邻(KNN)(Akbarian & Erfanian, 2020;Blinowska等,2017;Lehmann等,2007;Rajendra Acharya, Vinitha Sree, Alvin, & Suri, 2012),以及深度学习方法(Ball等,2016;Chen, Song, & Xiaoli, 2019;Saeedi, Saeedi, Maghsoudi, & Shalbaf, 2020)。

      可视化在脑连接性分析中是不可或缺的,并且对解释大脑活动和交互通信起着很大的促进作用。Zhao等人(2020)指出,大脑功能连接性的成像和研究可以以用户友好和系统的方式有效地革新我们对大脑退化或功能障碍的理解。此外,一些研究人员认为,连接性结果应该使用适当的可视化方法呈现,这些方法实际上将由神经生理学家来解释(Haufe, Nikulin, Müller, & Nolte, 2013)。另一方面,大脑连接性的可视化为一些深度学习方法生成了新颖和有前景的输入图像。文献表明,卷积神经网络(CNN)能够使用脑连接性的高级可视化技术识别EEG信号中存在的复杂性(Gao等,2019; Mammone, Ieracitano, & Morabito, 2020; Wang, El-Fiqi, Hu, & Abbass, 2019)。

      虽然近年来与大脑功能和有效连接性相关的众多有前景的方法不断涌现,为理解大脑网络功能的神经研究做出了贡献,一些综述也试图总结这些方法并讨论其局限性(Bastos & Schoffelen, 2016; Sakkalis, 2011; Van Diessen等,2015; van Mierlo等,2014a),但在过去几年中,在估计、应用以及特别是相关的机器学习方法方面缺乏全面的综述。此外,目前还没有关于表示功能和有效连接性变化的各种可视化方法的综述。

      本文第2节系统地回顾了大脑功能和有效连接性估计和分析方法,根据它们的属性和应用领域进行分类。这些用于量化大脑连接性的常用方法被分为参数和非参数技术,它们的概念和数学细节在附录中表示。第3节回顾了连接性可视化的各种不同方法,将其分为三类。第4节提供了大脑连接性方法及其在神经疾病和大脑活动研究领域应用的总结和批评性评估。然后我们详细讨论了可视化在大脑连接性分析中的作用。此外,第4节还讨论了机器学习的重要性及其与大脑连接性估计的各种有效结合。本节最后指出了已识别的研究空白和未来方向。结论在第5节给出。

2 估计

      表1给出了基于EEG估计大脑连接性的高频使用方法的综述,以及它们的属性。这些方法可以是线性或非线性的,参数或非参数的,属于功能或有效连接性,在时间、频率或时频域中。这些方法的概念和数学细节在附录中单独表示。从这个表中可以观察到,功能连接性通常由非参数方法估计,而有效连接性估计则基于参数技术。在本综述中,参数和非参数方法被分别归类。

表1. 使用EEG量化大脑连接性的方法比较

图片

缩写说明:Corr, 相关性; DCM, 动态因果建模; DTF, 定向传递函数; EC, 有效连接性; ERR, 误差减少比; FC, 功能连接性; GC, Granger因果性; GS, 广义同步; IPC, 相干性的虚部; MI, 互信息; MSC, 幅度平方相干; PDC, 偏定向相干; PLI, 相位滞后指数; PLV, 相位锁定值; PS, 相位同步; SEM, 结构方程建模; SL, 同步似然; STFC, 短时傅里叶相干; TE, 传递熵; WC, 小波相干。

2.1 非参数方法

2.1.1 线性方法

      大脑的线性相互通信已经研究了几十年,在计算和解释方面相对简单直接(Van Diessen等,2015)。相关性测量被广泛接受用于表示线性连接。皮尔逊相关系数(PCC)和互相关在时域中被应用于估计多通道EEG记录的功能连接性(Fagerholm等,2020; Handojoseno等,2013; Ibrahim等,2018; Lee & Hsieh,2014; Tarokh等,2010; Vortmann等,2019)。应注意,PCC是零时间滞后的互相关值。换句话说,如果两个EEG信号之间存在任何时间延迟,PCC就无法准确表示线性相关的强度。互相关在频域中的对应物是相干性。相干性对EEG信号之间的功率和相位关系的变化都敏感(Sakkalis,2011)。幅度平方相干(MSC; Battaglia & Brovelli,2019)和相干性的虚部(Ewald等,2012; Haufe & Ewald,2019; Nolte等,2004; Stam等,2007)被广泛使用,后者对体积传导不太敏感(Nentwich等,2020; Nolte等,2004)。相干性和相关性的局限性在于只能观察到谱分量或时间信息,而没有提供关于大脑动力学的信息。时频分析方法在研究皮质连接性变化方面很受欢迎,可以同时提取谱和时间信息(Sankari等,2012)。短时傅里叶相干(STFC)(Chen等,2013; Wendling等,2009)和小波相干(WC)(Ieracitano等,2017; Lachaux等,2002; Qassim等,2017; Sankari等,2012; Sankari & Adeli,2011)被多项研究用于在时频域中生成EEG功能连接性。STFC采用固定滑动窗口在时间窗口内进行谱分析,而WC(小波相干)针对不同的信号频率优化和调整小波基以表征时变相干性(Sakkalis,2011)。

2.1.2 非线性方法

     相位同步是一类专注于振荡系统相位耦合的方法。相位锁定值(PLV; Bajo等,2015; Bedo等,2020; Delgado-Restituto等,2019; Mheich等,2015; Sadaghiani & Kleinschmidt,2016)和相位滞后指数(PLI; Chaturvedi等,2019; Fraga González等,2018; Liao等,2019; Stam等,2007)被高频使用以获得相位同步的强度。信息论被认为是提取EEG信号之间非线性相互作用的另一种有效方法。具体来说,互信息(MI; Melia等,2015; Meng等,2015; Piho & Tjahjadi,2020; Rajendra Acharya等,2012; Yin等,2017)和同步似然(SL; Altenburg等,2003; Chriskos等,2018; Mumtaz等,2018; Pijnenburg等,2004; Yu等,2017)被用于估计EEG记录的无向功能连接性,而定向信息传递可以通过传递熵(TE)来量化。选择SL(同步似然)作为连接性度量可能会导致有偏结果,因为SL对体积传导效应敏感(Boersma等,2013)。相比之下,TE(传递熵)已经证明了其对体积传导的鲁棒性(Harmah等,2020; Huang等,2015; McBride等,2015; Yang等,2013; Yao & Wang,2017)。应注意,基于信息的方法是完全无模型的。也就是说,对数据施加的假设相对较少,但它需要更大的数据集(Seth等,2015; Zhao等,2020)。

2.2 参数方法

     参数方法指的是一种框架或程序,其中指定了一个需要一组固定参数来拟合观察信号的模型(Sakkalis,2011; Salman等,2018; Zhao等,2012)。与无模型技术相比,基于参数模型的方法更常用于估计多通道EEG的有效连接性。在这种情况下,参数有效连接性基于描述大脑区域如何相互作用和影响的理论模型(Sakkalis,2011)。动态因果建模(DCM; Brown & Friston,2012; Herz等,2012; Lee等,2020; Van de Steen等,2019)应用贝叶斯框架来评估模型性能,结构方程建模(SEM; Astolfi等,2004; Babiloni等,2003; Sartori等,2012)是一种将因素分析与路径建模相结合的广义线性建模框架(Kaur等,2019)。DCM和SEM分别将大脑视为确定性非线性和线性系统(Astolfi等,2004; David等,2006; Friston等,2003)。

      与需要一定程度先验连接性知识的DCM和SEM不同,许多研究人员已经开发了各种基于Granger因果性的数据驱动方法来量化有效连接性(Salman等,2018)。Granger因果性相关方法在完全无模型和高度依赖模型的方法之间占据了有用的中间地带(Seth等,2015)。大多数Granger因果性度量是基于自回归模型构建的,其中信号的当前样本使用过去样本的线性或非线性组合进行预测(Omidvarnia, Mesbah, Khlif,等,2011; Omidvarnia, Mesbah, O'Toole,等,2011; van Mierlo等,2014a; Zhao等,2020; Zhao, Billings, Wei, He,等,2013; Zhao, Billings, Wei, & Sarrigiannis,2013)。根据所考虑的自回归模型系数,偏定向相干(PDC; Ghumare, Schrooten, Vandenberghe, & Dupont,2018; He, Billings, Wei, & Sarrigiannis,2014; Mazher, Abd Aziz, Malik, & Ullah Amin,2017; Silfverhuth, Hintsala, Kortelainen, & Seppänen,2012; Varotto等,2012; Varotto等,2014)和定向传递函数(DTF; Haufe, Nikulin, & Nolte,2011; Omidvarnia, Mesbah, Khlif,等,2011; Omidvarnia, Mesbah, O'Toole,等,2011)被应用于基于EEG的神经科学领域。PDC(偏定向相干)在计算上比DTF(定向传递函数)更有效且更稳健,因为它不涉及任何矩阵求逆(He, Billings,等,2014)。Granger因果性最初是在线性自回归外生(ARX)输入模型的背景下开发的(Geweke,1982),而一些研究人员则专注于非线性因果性,这是由时域和频域中的非线性ARX模型生成的(Chen等,2019; He等,2013; He, Wei, Billings, & Sarrigiannis,2014; Zhao, Billings, Wei, He,等,2013; Zhao, Billings, Wei, & Sarrigiannis,2013)。除了传统的Granger方法外,还提出了误差减少比-因果性(ERR-因果性)检验来估计两个信号之间线性或非线性因果性的时变方向和强度以及它们的相对时间偏移(Sarrigiannis等,2014; Zhao等,2012,2020)。

3 脑连接性可视化

      为了有效解释从EEG记录中获得的结果,许多研究人员开发或采用了各种独特的可视化方法。本节旨在回顾功能连接性和有效连接性的典型可视化方法,并提供相应的关键比较。可视化方法可分为三类:热图、数据统计和头部地图。

      热图通常采用邻接矩阵来表示脑连接性的量化,这在显示所有可用EEG通道对之间的整体关系方面表现良好。Chu等(2015)发现,在发育不良患者中,功能网络和结构网络之间存在显著相似性。用于结构网络分析的感兴趣区域(ROIs)被选择以与用于构建功能网络的ROIs重叠。功能连接性通过互相关和相干性来量化,并通过热图来可视化,如图2a所示。这种可视化方法也被用于儿科癫痫研究(Sargolzaei等,2015)和自发血氧水平依赖信号的分析(Chang, Liu, Chen, Liu, & Duyn,2013)。

图片

图2 脑连接可视化的例子

 (a) 结构和功能网络在拓扑上相似。来自一位患者的结构和功能邻接矩阵示例。结构网络架构与互相关和相干性功能网络之间的相似性在视觉上很明显(Chu等,2015)。

(b) 非归一化定向传递函数(NDTF)对变量对主成分分析(PCA)加载的PC1的贡献。只有在Nold和AD组之间显示统计差异(p<0.0005)的NDTF对才有贡献。它提供了特定参数在分类过程中重要性的信息(Blinowska等,2017)。

(c) 为被诊断为左额叶区域癫痫和被诊断为全身性癫痫的受试者构建的功能连接图(应用连接强度阈值)(Sargolzaei, Cabrerizo, Goryawala, Salah, & Adjouadi, 2015)。

(d) 对不同情感音乐反应的有效脑网络(所有参与者的平均值)(Shahabi & Moghimi, 2016)。

(e) 修订的圆形图,叠加EEG电极位置,以突出显示实际电极位置及其在图中的对应位置(Zhao等,2020)。

     数据统计方法倾向于定量比较目标对,并通过设置阈值来可视化显著的对。Blinowska等(2017)展示了非归一化定向传递函数对值贡献中一系列定向对的统计差异(图2b),表明了健康老年人和阿尔茨海默病个体之间区分最重要的连接(Blinowska等,2017)。同样,PLI被估计并通过统计方法为脆性X综合征(FXS)患者进行可视化(Van Der Molen, Stam, & Van Der Molen, 2014),其中健康对照组在典型频率范围内显示了脑连接性差异。

      结合脑连接性和头部地图,研究人员能够表示健康和疾病之间的区别以及对外部刺激的反应,同时展示特定脑区的重要性。图2c和2d分别可视化了癫痫诊断的脑功能连接性(Sargolzaei等,2015)和人类对各种类型音乐情感反应的有效连接性(Shahabi & Moghimi, 2016)。此外,Zhao等(2020)提出了一种修订的圆形图来可视化阿尔茨海默病分类的功能连接性量化(图2e),这展示了特定区域对疾病诊断的潜在贡献。

     热图和头部地形图方法都可以表示反映特定脑区参与程度的连接性分布。热图采用邻接矩阵来显示每对电极之间的互连,而头部地图有助于分离和可视化可用于开发特定应用的感兴趣脑区,例如用于诊断目的的连接性差异表示(即健康和各种神经系统疾病中的脑网络功能)。值得注意的是,确定适当的阈值对于实施适当的头部地图方法很重要,因为过多或过少的信息可能会限制连接性解释。此外,热图通常用于可视化功能连接性而不是有效连接性,而头部地图可以揭示这两种类型的连接性。热图的另一个优点是它可以为深度学习模型生成适当的输入。例如,Chen等(2019)使用MI构建热图,然后将其用作CNN的输入。与其他两种方法相比,数据统计方法更侧重于量化。具体来说,这种方法倾向于提供数值比较并通过设置阈值选择最有价值的连接。因此,它更适合旨在反映有限数量电极对之间数据差异的研究。然而,无法表示整体拓扑连接特征,这限制了推断结构连接性对结果贡献的能力。

4 应用和机器学习

4.1 实际应用

      越来越多的证据表明,通过统计依赖性(如相关性和相干性)、信息论以及参数和非参数因果分析量化的脑连接性分析可以揭示神经系统疾病患者脑信号行为或模式的变化。在过去几年中,分析和理解不同类型神经系统疾病(如阿尔茨海默病(Bajo等,2015; delEtoile & Adeli,2017; Engels等,2015; Sankari & Adeli,2011)、癫痫(Clemens等,2013; Douw等,2010; Visani等,2010; Xie & Krishnan,2013)和帕金森病(Chaturvedi等,2019; Evangelisti等,2019; Handojoseno等,2013; Yuvaraj等,2016))的方法有了实质性发展,并出现了大量有前景的结果。除了神经系统和神经生理学研究及相关临床应用外,还有广泛的应用,其研究目标是帮助人类理解大脑行为,例如情绪识别(Khosrowabadi, Heijnen, Wahab, & Quek,2010; Lee & Hsieh,2014; Shahabi & Moghimi,2016)、物体识别(Kaur等,2019; Supp等,2007; Tafreshi等,2019)、心理评估(Al-Shargie等,2019; Cattai等,2018; Rathee, Cecotti, & Prasad,2017)和生物特征识别(Fraschini, Pani, Didaci, & Marcialis,2019; La Rocca等,2014; Wang等,2019)。

     同时,应用于脑连接领域的机器学习技术的快速进展导致了非常显著的发展,旨在对健康群体和各种神经系统疾病患者的脑网络行为有更深入和更好的理解。表2显示了一些最近将脑连接性估计与机器学习方法结合的应用。

表2. 最近将脑连接性估计与机器学习方法结合的应用

应用

估计方法 + 机器学习方法

物体识别 (Tafreshi et al., 2019)

PCC, WC, MSC, PS 和 MI + SVM

帕金森病相关痴呆和阿尔茨海默病的诊断 (Jeong, Do Kim, Song, Chung, & Jeong, 2016)

WC + 线性判别分析 (LDA)

预测帕金森病患者步态冻结 (Handojoseno et al., 2013)

PCC + 多层感知机神经网络和 k-近邻分类器

情绪识别 (Piho & Tjahjadi, 2020)

MI + SVM, 朴素贝叶斯 (NB) 分类器和 K-近邻 (KNN)

检测大脑对情感音乐的反应 (Shahabi & Moghimi, 2016)

DTF + SVM

区分阿尔茨海默病患者和健康个体 (Blinowska et al., 2017)

DTF + 人工神经网络 (ANNs)

抑郁症诊断 (Saeedi et al., 2020)

PDC 和 DTF + 长短期记忆和卷积神经网络 (CNN)

注意力缺陷/多动障碍识别 (Chen et al., 2019)

MI + CNN

阿尔茨海默病诊断 (Zhao et al., 2020)

ERR + KNN

重度抑郁障碍诊断 (Mumtaz et al., 2018)

SL + SVM, 逻辑回归 (LR) 和 NB

自闭症谱系障碍分类 (Jamal et al., 2014)

PS + LDA 和 SVM

语音分类决策 (Al-Fahad, Yeasin, & Bidelman, 2019)

PCC 和图网络 + SVM 和 LDA

经颅磁刺激监测 (Gupta, Du, Hong, & Choa, 2019)

相干性 + 主成分分析 (PCA) 和稀疏非负矩阵分解 (NMF)

检测意识障碍 (Wang, Tian, Zhang, & Hu, 2020)

SVM 集成 + 功率谱密度差 (PSDD) 结合递归余弦函数

镇静程度评估 (Sanz-García et al., 2019)

PS + SVM

检测心理生理性失眠 (Aydın, Tunga, & Yetkin, 2015)

MI, PCC 和 MSC + NB, 随机森林, 回归方法和基于最近邻的方法

研究氯氮平治疗的效果 (Ravan, Hasey, Reilly, MacCrimmon, & Khodayari-Rostamabad, 2015)

交叉功率谱密度 (CPSD) + 模糊 c-均值

面部感知任务 (Jamal, Das, Maharatna, Pan, & Kuyucu, 2015)

PLV + LDA 和 KNN

4.2 手工特征与成像特征

      一方面,基于EEG的应用的最新方法大多采用包含手工特征和传统机器学习分类器的程序。例如,"PCC、WC、MSC、PS和MI + SVM"应用于物体识别(Tafreshi等,2019),"WC + LDA"用于帕金森病相关痴呆和阿尔茨海默病的诊断(Jeong等,2016),"DTF + SVM"用于检测大脑对情感音乐的反应(Shahabi & Moghimi,2016),以及"SL + SVM、LR和NB"用于重度抑郁症的诊断(Mumtaz等,2018)。另一方面,近年来各种可视化方法为深度学习提供了稳健的特征。例如,Saeedi等(2020)使用两种连接性度量(PDC和DTF)和八个频带重建连接性图像作为深度学习网络的输入。该方法在重度抑郁症诊断中达到了99.24%的准确率。

5 讨论

5.1 连接性估计

      脑连接性在评估不同神经系统疾病患者的脑功能和追踪健康参与者的各种认知和情感脑状态方面显示出重要潜力。选择最合适的连接性度量至关重要,因为广泛分布的复杂脑网络在不同条件下产生多样的拓扑信号处理和互通。因此,从多方面开发了许多新方法。这包括考虑线性或非线性行为、时域、频域或时频域中的信息、参数或非参数度量、有向或无向信息。

5.1.1 功能连接性与有效连接性

      在有效连接性研究中,参数方法被广泛用于量化分离脑区之间的定向互连。有效分析参数建模的主要优势是模型结构通常透明和紧凑,滞后信号作为模型变量。参数模型的估计通常不需要大量样本,因此参数建模允许执行瞬态或时间依赖的连接性分析(Li, Lei, Cui, Guo, & Wei,2019; Zhao等,2012)。另一方面,功能连接性捕捉分布和空间分离的神经区域之间的统计独立性,例如使用双变量度量(Wang等,2019)。功能连接性通常是无模型的,这减少了对信号设置严格假设的需求。然而,需要增加数据量以满足功能连接性估计的计算需求。

5.1.2 基于相位的连接性与基于幅度的连接性

       脑连接性还可以分为基于相位的连接性和基于幅度的连接性。幅度连接性通常用相关性估计(Brookes等,2011; Chang等,2013; Hipp & Siegel,2015; Wang等,2020),而相位耦合通常用基于相干性的方法和相位同步估计(Bastos & Schoffelen,2016; Chaturvedi等,2019; Fagerholm等,2020; Nolte等,2004; Stam等,2007)。这些方面进一步捕捉不同的神经过程(He等,2019; Siems & Siegel,2020)。因此,基于相位和幅度的方法给出部分重叠、部分不同的结果。同时,已经表明在噪声信号中,相位和幅度动态相互影响,相位估计的可靠性本质上取决于信噪比(SNR),并且在较高信号幅度存在时通常可能更准确(He等,2019)。

5.1.3 分析中的注意事项

      体积传导是分析EEG记录时的一个重要问题,已被证明会影响传感器空间的连接性分析(Haufe等,2013),例如相位耦合(Palva等,2018)、Granger因果关系(Haufe等,2013)和相关方法(Hipp & Siegel,2015)。为避免体积传导的影响,提出了一些方法,如相干性的虚部(van Mierlo等,2014a)、DTF (Kamifiski & Bfinowska,1991)和PDC (Baccalá & Sameshima,2001)。此外,从传感器级EEG计算源级连接性可以消除由体积传导或场传播引起的影响(He等,2019)。这个过程被称为逆问题(Van Diessen等,2015)。同时,一些研究人员认为从传感器级EEG记录解释连接性度量并不简单。相反,源级EEG被认为是测量连接性的可靠工具,它可以从头皮EEG重建(Moezzi & Goldsworthy,2018)。

5.2 可视化的作用

      可视化在EEG脑连接性研究中起着至关重要的作用。具体来说,它为新方法的进一步实际和临床应用奠定了基础。它不仅可以提高其他研究人员理解和评估所提出方法和产生结果的效率,而且有利于专家向没有EEG信号和脑连接性基础知识的人展示和解释从各种高级方法获得的发现。热图、数据统计和头部地图通常总结了各种流行的可视化方法,并满足研究人员的不同要求和目标。

     此外,EEG研究可以与适当的可视化方法相结合,研究人脑动态架构中的潜在功能、振荡和互通(Chen等,2013)。目前与EEG相关的医疗仪器主要关注单一通道内的振荡和生物标志物(Ratti, Waninger, Berka, Ruffini, & Verma,2017)。因此,从作者的角度来看,可视化的发展和创新有潜力促进EEG相关设备的升级,以及探索人脑中更多的秘密。

     脑连接性可视化的另一个机会是与深度学习方法的结合,这在脑研究中已经吸引了越来越多的关注。有大量工作使用各种深度学习方法来理解EEG记录,但大多数直接使用原始数据。这种方法的局限性是缺乏透明度,因为它们通常无法揭示哪个脑区存在异常以及如何导致神经系统疾病。越来越多的证据表明,CNN通过自动学习原始图像的空间模式,而不是使用手工制作的特征,在分类图像方面具有优越的性能。因此,使用脑连接性可视化(以图像形式)作为CNN分类的输入是很有前景的。从本质上讲,在这种方法中,脑连接性充当手工制作的特征,但以图像格式而不是单一值的形式。Chen等人提出了一个将基于EEG的脑网络(由MI估计)与CNN技术相结合的注意力缺陷/多动障碍(ADHD)识别问题的通用框架(2019)。该框架通过热图可视化实现了94.67%的令人信服的准确率。除了功能连接性,有效连接性可视化也可以为CNN提供有价值的输入。例如,Saeedi等(2020)构建了一个包含两种连接性度量(PDC和DTF)和八个频带的连接性图像作为深度学习网络的输入。实验表明,应用于有效连接性构建图像的CNN在重度抑郁症诊断中取得了最佳结果,准确率为99.24%。

5.3 研究空白和未来方向

      尽管在这一领域取得了重大成果,但仍存在局限性和重大挑战。首先,大脑网络交互是动态的,可能随时间变化(相关信号是非平稳的),因为相位同步和相位散射发生在毫秒范围内(Varela等,2001)。不同脑区之间的瞬时关联(通常是高度非线性的)已被观察到(Sarrigiannis等,2014,2018)。虽然近年来脑连接技术有所发展,但能分析大脑网络非平稳和非线性行为的方法有限。探索EEG信号中隐藏的信息远远超出了常用方法的能力。

      其次,简化数据驱动方法的解释是一个挑战。虽然从AR模型扩展的传统参数模型(如ARMAX和NARMAX模型(Gu等,2021)以及动态因果模型(David等,2006))简洁透明,其单个模型项有明确解释并可追溯到原始神经系统,但其他类型的参数模型(如非线性核模型(Shen等,2016))往往复杂,由于缺乏透明度,很难将模型与底层系统联系起来。解释非参数方法(如神经网络(Abbasvandi & Nasrabadi,2019; Saeedi等,2020))的结果需要足够的数学知识和一些特定的专业建模技能。因此,这些方法的整体性能在很大程度上取决于最终用户(如果工具是为临床应用开发的,通常是临床医生或医生)的经验和知识。

       第三,目前的EEG系统在数据采集过程中没有大脑功能连接性的实时反馈。因此,科学家(如神经学家或神经生理学家)无法灵活地实时关注特定网络区域的检查,或确定最显著的异常状态或行为发生在哪里。一些研究人员已经开始将EEG与增强现实结合(Mercier-Ganady等,2014; Vortmann等,2019),但他们只关注从单一通道获得的信息。缺乏实时追踪和可视化时变脑连接性的应用。

      第四,从作者的角度来看,神经科学中有许多可视化和成像技术,其中一些用于其他成像模式的技术也有潜力可视化EEG脑连接性。例如,BioImage Suite为fMRI功能连接性提供了一个有吸引力和解释性的可视化(Finn等,2015; Shen等,2018)。

      因此,尽管脑连接技术在过去几年中得到了显著发展,但仍需要更多的验证和改进/发展。表3提出了潜在的方向和可能的策略,这将有助于从各种新颖的角度加深我们对大脑功能和有效连接性的理解,以及如何提高它们的可用性和可靠性。

表3. EEG脑连接性研究的潜在方向

未来方向

目的或策略

新型估计

通过稳健的大脑连接性方法,特别是非平稳和非线性的交互通信,从脑电图信号中提取更多有价值的信息。

可解释性

设计适当的可视化方法,以降低理解大脑连接性估计及其结果(如疾病诊断和大脑活动分析)的实际含义的难度。

普遍性

建立一个覆盖不同年龄、性别和疾病状况的人群的大型数据集,以开发和评估通用的大脑连接性方法。

实时研究

基于先进的大脑连接性估计和可视化方法,建立实时传感器和监测系统,捕捉动态神经连接性并辅助观察。

改进诊断

将估计的大脑功能或有效连接性的可视化作为深度学习方法的输入,以保持透明度并提高分类准确性。

应用扩展

追求对大脑网络的更深入理解,并探索脑电图大脑连接性可以应用的潜在领域。

6 结论

      本文回顾了近期使用EEG估计大脑功能和有效连接性的研究,以及相关的可视化方法及其应用。观察发现,功能连接性通常使用非参数方法测量,而有效连接性则使用参数方法测量。与参数方法相比,非参数方法需要的假设相对较少,但它们需要更大的数据集。使用适当的功能和有效连接性方法,有可能识别出EEG记录中隐藏的大脑网络的非线性动力学和时空特征。尽管已经取得了进展,但这些方法的潜力远未被充分探索。预计该领域的未来研究将集中在更好地整合不同方法,特别是机器学习方法,以提高疾病诊断的准确性,同时增加透明度。在数据采集阶段引入大脑连接性的实时可视化可以提高数据质量,并帮助科学家更好地识别在各种神经系统疾病条件下大脑的哪些区域表现出连接性缺陷。

原文:Brain functional and effective connectivity based on electroencephalography recordings: A review

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值