NeuroMark:一种基于自动化和自适应ICA的流程,用于识别脑疾病的可重复fMRI标记物

许多精神疾病具有重叠或相似的临床症状,这使得诊断变得复杂。系统地表征独特和相似的变化模式如何反映脑部疾病是非常重要的。神经影像学数据共享计划的增加为研究脑部疾病提供了前所未有的机会。然而,如何在不同研究之间复制和转化研究结果仍然是一个开放性问题。迫切需要标准化的方法来捕获可重复和可比较的影像标记物。在此,我们提出了一种基于先验驱动的独立成分分析的流程,称为NeuroMark,它能够从功能性磁共振成像(fMRI)数据中估算脑功能网络测量,可用于连接不同数据集、研究和疾病之间的脑网络异常。NeuroMark利用从1828名健康对照提取的可靠脑网络模板作为指导,自动估算适应每个个体受试者的特征,并在数据集/研究/疾病之间具有可比性。我们进行了四项研究,涉及2442名受试者,跨越六种脑部疾病(精神分裂症、自闭症谱系障碍、轻度认知障碍、阿尔茨海默病、双相障碍和重度抑郁障碍),从不同角度评估了所提出流程的有效性(脑部异常的复制、跨研究比较、微妙脑部变化的识别,以及使用识别的生物标志物进行多疾病分类)。我们的结果强调,NeuroMark有效地识别了不同数据集中精神分裂症的重复脑网络异常;揭示了自闭症和精神分裂症之间重叠和特异性的有趣神经线索;展示了轻度认知障碍和阿尔茨海默病中存在不同程度的脑功能损伤;并捕获了在分类双相障碍和重度抑郁障碍时表现良好的生物标志物。本文发表在NeuroImage: Clinical杂志。

亮点:
•提出一种新的流程,用于链接不同数据集、研究和疾病之间的脑部变化。

•使用独立数据识别精神分裂症中可重复的生物标志物。

•发现精神分裂症和自闭症中共同和独特的脑损伤。

•揭示从健康对照到轻度认知障碍再到阿尔茨海默病的渐进变化。

•在双相障碍和重度抑郁障碍之间获得高分类准确率(~90%)。

关键词:fMRI 独立成分分析 脑疾病 可重复和可比较的生物标志物 NeuroMark

1. 引言

      在神经科学领域,不断增加的数据共享计划加速了神经影像学数据在临床研究脑疾病中的应用。获取多中心数据集为跨疾病的大规模分析提供了前所未有的机会。从功能性磁共振成像(fMRI)数据中得出的脑功能连接和其他相关测量对于表征脑组织及其在脑疾病中的异常非常有效。大量证据表明,功能连接是早期诊断和治疗脑疾病的可靠指标。

      许多方法被用来捕获反映功能连接的神经影像特征,包括:基于感兴趣区(ROI)或种子点的连接分析、基于分解的独立成分分析(ICA)、自激活检测方法(如低频波动振幅和区域同质性),以及将脑体素分组的聚类技术。ROI分析和ICA是研究功能连接的两种常用策略。虽然基于ROI的方法通常需要根据先验经验或知识(如脑图谱)固定脑区,但ICA作为一种数据驱动方法,能够在保留更多单个受试者变异性的同时捕获功能网络。

      ICA利用隐藏的时空信息来提取空间独立成分(ICs),每个成分包括具有共变模式的脑体素。此外,ICA同时执行成分提取和噪声成分去除,这可能为功能连接估计提供更好的信噪比水平。ICA还能分离重叠但不同的功能活动,这是基于图谱分析无法实现的。为了克服ICA中不同受试者的成分可能没有空间对应关系的局限性,研究人员开发了组ICA方法。这些方法对组数据执行ICA以估计组水平的成分,然后利用反向重建策略提取个体水平的功能网络及其相关时间序列。

      然而,组ICA仍面临一个重大挑战:由于数据特性的差异,识别的成分可能在不同的组ICA运行之间存在差异,影响其在不同研究之间复制和比较结果的能力。例如,尽管实施了相同的模型顺序,Allen等人识别了50个内在连接网络(ICNs),而Marusak和Calhoun等人则描述了52个ICNs。这种差异阻碍了结果之间的直接比较。组ICA的另一个潜在问题是,传统的基于ICA的分类研究通常对所有受试者的fMRI数据执行组ICA,以使得到的特征在训练集和测试集之间保持一致。然而,这种操作可能存在偏差,因为特征提取应该独立于测试数据。因此,采用一种ICA方法来估计脑网络测量是至关重要的,这种方法应以无偏的方式充分保持个体特性,同时也能够在来自不同数据集/研究/疾病的受试者之间进行比较。

     从临床角度来看,使用神经影像学数据评估具有临床重叠症状的疾病之间的敏感性、特异性以及相似性和重叠性非常重要。例如,分裂情感障碍和双相障碍都会经历幻觉和妄想,这些是精神分裂症(SZ)的典型特征,这使得它们的临床区分变得困难。因此,研究它们之间共同和独特的脑损伤对于更好的诊断和准确的治疗将是有益的。遗憾的是,直接比较症状相关疾病并使用大样本数据集验证脑部变化的研究很少,这可能是由于分析方法在表征个体变异性和可靠性方面的能力有限。此外,由于依赖症状评估的传统诊断可能并不完善,结合使用神经影像衍生特征来开发跨精神疾病的新的生物学类型可能是有前景的。

      考虑到SZ和自闭症谱系障碍(ASD),尽管它们被概念化为不同的疾病,但近年来由于它们共同的表型和基因型表达而被重新审视。已有研究通过对神经影像衍生特征进行聚类技术来探索精神疾病(如精神分裂症)的亚型。因此,能够准确捕捉具有生物学意义的受试者特定特征,同时仍能在不同个体之间进行比较的有效方法将有助于完善当前的疾病分类。随着比以往任何时候都更多的神经影像学数据可用,基于ICA的方法在研究跨脑疾病的共同和独特的脑网络异常方面具有巨大潜力。但由于不同ICA运行之间IC估计和排列的不一致性,传统ICA方法无法直接在多个数据集上实施,这极大地影响了比较和验证疾病间脑变化的能力。因此,需要先进的ICA技术,能够准确估计代表可解释生物标志物的受试者特定网络特征,并实现对应的网络特征,以加速评估生物标志物的普遍性、可重复性及其与其他数据的关系。

      在本研究中,我们提出了一个名为NeuroMark的流程,该流程利用自适应ICA技术(如组信息引导ICA(GIG-ICA)或空间约束ICA),通过整合从独立大样本中得出的空间网络先验作为额外输入,完全自动化估计和标记个体受试者的连接特征。我们将NeuroMark流程应用于四项研究,涉及六种脑疾病和超过2400个受试者样本,以验证其在不同方面的表现。我们预期可以在独立数据集上发现某些精神疾病患者的可重复脑变化。我们对使用NeuroMark进行跨研究比较以连接相关精神疾病感兴趣。我们还希望NeuroMark能够提取逐步发展的疾病之间的细微组间差异。另一个关注点是其在捕获有效生物标志物以分类具有挑战性的脑疾病方面的能力。

2. 材料和方法

     在本节中,我们首先介绍NeuroMark,然后将其应用于四个示例研究以评估其能力。

2.1. NeuroMark

      NeuroMark的流程图如图1所示:

      首先,使用不同的大样本健康对照(HCs)数据集估计独立成分(ICs)。

     其次,通过匹配和检查来自不同数据集的ICs的空间图,识别出可重复的内在连接网络(ICNs)。

     接下来,使用高度重复的ICNs作为网络模板,应用自适应ICA方法(Du and Fan, 2013; Du et al., 2016a; Salman et al., 2019)自动估计受试者特定的功能网络及其相关的时间序列(TCs)。

     最后,计算不同的功能连接特征,如静态或动态功能网络连接(FNC),然后进行评估。以下是详细说明。

图片

图1. NeuroMark流程的示意图。
     步骤1:分别从两个独立的数据集,人类连接组项目(HCP)和基因组超结构项目(GSP)数据集,计算群组水平的独立成分(ICs)。
     步骤2:使用ICs空间图之间的相关性进行匹配,然后识别高度重复的内在连接网络(ICNs)作为网络模板。
     步骤3:在自适应ICA中将网络模板作为先验信息,计算个体水平的ICNs及其相关的时间序列(TCs)。可以获得功能连接特征,如静态和动态功能网络连接(FNC),然后在数据集、研究和疾病之间进行比较。

2.1.1. 识别可靠的功能网络模板

      空间网络先验(即ICN模板)是使用人类连接组计划(HCP)和基因组上结构计划(GSP)的两个独立的健康对照静息态fMRI数据集获得的。GSP数据集使用统计参数映射(SPM12)进行预处理。进行刚体运动校正以纠正受试者头部运动,随后进行切片时间校正以解释切片获取的时间差异。fMRI数据随后使用EPI模板变形到标准蒙特利尔神经学研究所(MNI)空间,并重采样为3 × 3 × 3 mm3等体素。重采样的fMRI图像进一步使用高斯核进行平滑,全宽半高(FWHM) = 6 mm。对于HCP数据集,我们从网上下载了预处理过的数据,并使用SPM12将其重新切片到与预处理过的GSP数据相同的空间分辨率(3 × 3 × 3 mm3)。有关HCP数据预处理的更多细节可以在网上找到。

      我们对所有预处理后的数据进行了质量控制(QC)。详细的QC程序可以在补充材料中找到。质量控制后,共选择了GSP数据集的1005名个体和HCP数据集的823名个体进行进一步分析。年龄、性别和运动信息请参见表S1。对于GSP数据,所有成像数据都是在西门子3T MAGNETOM Tim Trio MRI系统上使用供应商提供的12通道相控阵头线圈采集的。虽然使用了五种不同的扫描仪来采集数据,但每个扫描仪都使用完全相同的序列、参数和说明。HCP受试者在定制的西门子3T "Connectome Skyra"上进行扫描,使用标准的32通道西门子接收头线圈和西门子专门为Connectome扫描仪的特殊梯度提供的较小空间设计的线圈。GSP和HCP数据集具有不同的时间分辨率(GSP数据的TR = 3秒,HCP数据的TR = 0.72秒)。在GSP数据集中选择的1005名受试者中,935名是右利手,61名是左利手,9名使用双手。选择的1005名受试者的平均受教育年限为14.45年,标准差为1.91。612名受试者是白人且不是西班牙裔,393名受试者是其他种族/族裔。在选择的823名HCP数据集受试者中,747名是右利手,74名是左利手,2名是双手。823名受试者的平均受教育年限为14.88年,标准差为1.82。549名受试者是白人且不是西班牙裔,274名是其他种族/族裔。我们使用具有不同扫描信息、预处理程序和人口统计分布的两个数据集,因为我们希望捕捉在不同条件下可重复的功能网络,以便选择的网络模板可以可靠地用于各种独立数据。

     我们分别对GSP和HCP数据集进行ICA以产生可靠的IC。首先,对每个受试者进行主成分分析(PCA),将fMRI数据降至110个主成分(PC),保留了原始数据>95%的方差。然后,将每个受试者的个体水平PC在不同受试者(GSP的1005名受试者或HCP的823名受试者)之间连接起来,通过组级别的另一个PCA降至100个PC。接下来,应用Infomax算法(Bell and Sejnowski, 1995)将100个PC分解为100个IC。使用ICASSO技术(Himberg and Hyvarinen, 2003)重复此过程100次,选择最佳ICA运行为每个数据集生成100个可靠的IC(成分)(Ma et al., 2011)。在我们的研究中,我们计算了每个估计IC的偏度,如果其偏度为负,则翻转IC。

     使用贪婪空间相关分析匹配两组IC,然后检查以找到可重复的ICN作为网络模板。通过计算GSP和HCP的IC空间图之间的Pearson相关系数的绝对值,得到一个相似度矩阵C(大小:100 × 100)。基于矩阵C,选择具有最大相关值的IC对,并将其视为第一个匹配的IC对。如果它们的原始相关值为负,则对其中一个IC进行符号翻转。在识别匹配的IC对后,将矩阵C中与它们相关的相关值设置为零,得到一个新的相似度矩阵Cnew。因此,在更新的相关矩阵上不断重复匹配程序,直到找到最后一对匹配的IC对。如果IC对显示出高于给定阈值0.4的空间相关性,则认为它们是可重复的,这是比之前工作(Smith et al., 2009)更严格的阈值。接下来,如果这些可重复IC在灰质中显示峰值,与已知的血管、脑室、运动和其他伪影的空间重叠较低,并在其时间序列中表现出主导的低频波动,我们将其中的一部分描述为ICN(intrinsic connectivity networks,内在连接网络)。五位fMRI专家仔细检查了这些匹配的IC,然后标记有意义的ICN并将它们分配到不同的功能域。获得超过三票的IC被确定为有意义的ICN。这产生了来自HCP和GSP数据集的两组高度相似的ICN。最后,从GSP数据集捕获的ICN被作为网络模板,因为它们的空间图更平滑,噪音更少。在此之后,我们用N表示网络模板的数量。

2.1.2. 估计受试者特定的大脑功能网络和相关连接特征

      基于每个受试者的fMRI数据,使用自适应ICA计算受试者特定的ICN,这是一种使用先验网络模板作为指导,自动和自适应地估计个体水平独立成分的方法。GIFT (fMRI群组ICA工具箱,http://trendscenter.org/software/)中提供了两种可用于自适应ICA的ICA算法(Lin et al., 2010, Du and Fan, 2013)。在本文中,由于其优越性,我们扩展了GIG-ICA (Du and Fan, 2013)用于自适应ICA,将获得的网络模板和每个受试者的fMRI数据作为输入。基本上,GIG-ICA有两个目标函数,一个是优化网络的独立性,另一个是优化一个受试者特定网络与其相关网络模板之间的可比性。通过模拟,我们之前的研究(Du and Fan, 2013, Du et al., 2016a)证明,与其他群组ICA方法相比,GIG-ICA可以更准确地获得受试者特定的独立成分。使用测试-重测fMRI数据,GIG-ICA在估计的网络中产生的组内相关系数(ICC)高于独立向量分析(IVA)(Du et al., 2017)。我们的另一项工作(Salman et al., 2019)支持GIG-ICA在区分精神分裂症患者和健康对照时可以产生比双回归方法更高的分类准确率。在原始的GIG-ICA算法中,用作指导的群组水平成分是从其自身的群组数据计算得出的(Du and Fan, 2013, Du et al., 2016a)。在本文中,我们使用从两个独立数据集验证的标记和排序的网络模板作为空间先验,用于指导估计受试者特定的网络。

      多目标优化由公式(1)表示,表示如何使用网络模板作为指导来估计一个受试者特定的网络。

图片

   在公式(1)中,Sl表示第l个网络模板,

图片

表示第k个受试者的估计对应网络,其中Xk是表示第k个受试者fMRI数据矩阵的白化Xk(编者注:"白化"是一种预处理技术,用于去除数据中的相关性)。这里,

图片

是待在优化函数中求解的解混列向量。第一个函数用于优化

图片

的独立性度量,这通过

图片

反映,即

图片

的负熵。这里,v是均值为零、方差为1的高斯变量;

图片

是非二次函数。第二个函数

图片

用于衡量Sl和

图片

之间的对应关系。E[]表示变量的期望。应用线性加权和方法来组合两个目标函数(Du and Fan, 2013),权重为0.5,以解决优化问题。我们的方法可以自动得到Z分数化的网络。值得指出的是,使用我们的方法,在不同运行中得到的结果成分(网络)将非常稳定。因此,对于每个受试者,所有N个对应于N个网络模板的受试者特定网络及其相关的时间序列(TCs)都从数据中估计出来。总之,使用NeuroMark,所有受试者特定的功能网络不仅可以在不同数据集/研究/疾病之间以及先前分析的数据与新来的独立数据之间进行比较,而且还能显示受试者独特的特征。

     使用NeuroMark,可以从静态和动态的角度获得多种网络特征,包括空间功能网络、网络间的功能连接、功能组织的图论度量以及网络波动的频率信息。以功能网络连接(FNC)为例,静态FNC(sFNC)可以通过计算ICN时间序列之间的皮尔逊相关来获得,得到反映任意两个网络之间相互作用的sFNC矩阵。虽然每个ICN的空间图反映了大脑功能网络内的内部连接,但sFNC矩阵代表了不同ICN(内在连接网络)之间的相互连接强度。动态FNC(dFNC)也可以通过滑动时间窗口方法进行研究(Hutchison et al., 2013, Allen et al., 2014),其中通常使用将矩形与高斯卷积得到的锥形窗口来将每个ICN的整个时间序列分割成几个短时间序列。对于每个窗口,使用ICN的窗口时间序列计算连接矩阵,以测量窗口内ICN之间的功能连接。因此,对于每个受试者,每个窗口的连接矩阵可以连接起来形成一个数组(大小:N×N×T,这里T是ICN的数量,W是窗口的数量),表示FNC随时间的变化。

2.2. 验证NeuroMark的研究

     在本文中,我们进行了四项不同的研究,从不同角度全面评估我们提出的NeuroMark流程。在QC处理后,我们总共包括了来自2442次扫描的静息态fMRI数据用于实验。表1总结了四项研究中每项的年龄、性别和运动信息。研究1重点调查使用来自功能生物医学信息研究网络(FBIRN)和马里兰精神病研究中心(MPRC)的独立精神分裂症(SZ)数据的大脑功能连接异常的可重复性。我们希望在这两个数据集之间能找到可重复的大脑变化。在研究2中,我们使用自闭症大脑影像数据交换(ABIDEI)第一版数据识别了自闭症谱系障碍(ASD)的功能变化,然后将结果与研究1联系起来,旨在展示NeuroMark在跨疾病比较中的能力。我们对SZ和ASD之间的相似和独特变化感兴趣。在研究3中,我们对进行性发展障碍进行了动态连接分析,使用来自阿尔茨海默病神经影像学计划(ADNI)数据集的阿尔茨海默病(AD)患者、轻度认知障碍(MCI)患者和健康对照(HC)的数据,以展示NeuroMark在探索细微群组差异方面的能力。预期NeuroMark能够揭示从HC到MCI再到AD的渐进性变化。在研究4中,我们的目标是验证使用NeuroMark估计的网络特征在区分具有挑战性的脑部疾病(双相障碍(BD)和重度抑郁障碍(MDD))方面的分类能力。

表1. 研究1-4中使用的数据集的人口统计和头动信息。

图片

:使用双样本t检验和方差分析(ANOVA)来检验组间在年龄、头动平移和旋转方面的差异。使用卡方检验来检验性别差异。

     在以下研究中,NeuroMark被应用于每个受试者的fMRI数据以提取受试者特定的ICN及其相关的时间序列。由于网络模板被用来指导受试者特定ICN的估计,我们研究了网络模板与受试者特定ICN之间的对应关系以及不同受试者ICN之间的对应关系是否能够很好地保持,并进一步研究每个受试者ICN的独特特征是否仍然得以保留。为了衡量网络模板和受试者特定ICN之间的对应关系,对于每个受试者,我们首先使用皮尔逊相关系数计算每个网络模板和估计的ICN之间的空间相似性,然后对所有ICN的相关系数取平均以反映其模板-ICN相似性。我们通过总结每个数据集中所有受试者(例如FBIRN中的HC和SZ受试者)和每个组中的受试者(例如FBIRN中的HC或SZ受试者)的模板-ICN相似性,研究模板-ICN相似性是否在不同研究和组之间显示可靠性。除了模板-ICN相似性,我们还评估了受试者特定ICN之间的相似性,以验证网络模式可以是受试者独特的,同时它们仍然在受试者之间对应(可比较)。对于由一个网络模板指导的ICN,我们计算了这些受试者特定ICN之间的皮尔逊相关系数,然后对系数取平均以反映ICN的受试者间相似性。所有ICN的受试者间相似性的平均值被用来总结受试者间ICN相似性。我们还展示了每个数据集中所有受试者和每个组中受试者的受试者间ICN相似性,以反映数据变异。

2.2.1. 研究1:调查精神分裂症中的静态功能网络连接(sFNC)异常:一项复制研究

     在第一项研究中,我们评估了NeuroMark识别跨不同数据集的可重复疾病异常的能力。NeuroMark被应用于两个独立的SZ数据集。发现数据集来自FBIRN,包括210名SZ患者和195名HC。复制数据集是在MPRC收集的,包括251名SZ患者和327名HC。两个数据集都使用与GSP数据集相同的预处理流程进行了预处理。受试者纳入标准也类似,要求参与者的头部运动 <= 3°且 <= 3 mm,且功能数据提供近乎完整的大脑成功标准化。我们在FBIRN数据集中保留了137名SZ患者和144名HC,在MPRC数据集中保留了150名SZ患者和238名HC进行进一步分析。

      我们将NeuroMark应用于每个数据集以提取受试者特定的ICN及其相关的时间序列。在sFNC计算之前,进行了以下步骤以去除时间序列的噪声源,包括1)去除线性、二次和三次趋势;2)对六个重新对齐参数及其时间导数进行多重回归;3)去除尖峰以检测和去除异常值;4)带通滤波[0.01-0.15] Hz。然后,通过计算后处理时间序列之间的皮尔逊相关系数,为每个受试者获得一个sFNC矩阵。每个sFNC的强度(即sFNC矩阵中的每个元素)被转换为Fisher's Z分数。之后,对于每个sFNC,我们分别对FBIRN和MPRC数据集进行双尾双样本t检验(p < 0.05,Bonferroni校正),在控制年龄、性别和站点效应后,研究HC和SZ患者之间连接强度的差异(见补充材料)。最后,我们比较了从两个数据集中识别出的显著sFNC差异,以突出SZ中可重复的功能连接异常。

2.2.2. 研究2:调查自闭症谱系障碍(ASD)和精神分裂症(SZ)中共同和独特的静态功能网络连接(sFNC)改变:多项研究比较

     由于我们使用独立于被分析数据的大样本人群数据获得了大脑功能网络模板,因此使用NeuroMark可以链接多个独立研究。在这项研究中,我们调查了ASD与HC相比的sFNC变化,然后将结果与研究1中捕获的结果进行比较,以寻找SZ和ASD之间的共同和独特损伤。ASD数据来自ABIDEI,由国家心理健康研究所提供。ABIDEI数据集包括539名ASD个体和573名HC。我们进行了与研究1中相同的预处理和受试者选择。最终,ABIDEI数据集中保留了398名ASD个体和471名年龄匹配的HC。

     与研究1类似,我们将Neuromark应用于ABIDEI数据集,以估计每个受试者的ICN和相应的时间序列。然后,我们使用双尾双样本t检验(p < 0.05,Bonferroni校正)调查了HC与ASD在sFNC测量上的差异。在NeuroMark的帮助下,我们基于研究1的结果和上述分析获得的结果,比较了症状相关疾病(即SZ和ASD)在sFNC改变的重叠和独特性方面的情况。在统计分析之前,年龄、性别和站点效应被回归掉(见补充材料)。此外,对于SZ和ASD之间共同变化的FNC,我们还计算了FNC测量与临床症状之间的相关性。对于SZ,症状评分包括阳性和阴性症状量表(PANSS)阳性分数和PANSS阴性分数。ASD的症状包括自闭症诊断观察量表(ADOS)总分和社会反应量表(SRS)。相关性分析的显著性水平设置为p < 0.05。

2.2.3. 研究3:调查阿尔茨海默病(AD)和轻度认知障碍(MCI)中的动态功能网络连接(dFNC)异常

      在这项研究中,我们旨在展示NeuroMark可以有效捕捉渐进发展的脑部疾病之间动态功能网络连接(dFNC)特征的微妙差异。我们比较了阿尔茨海默病(AD)患者、轻度认知障碍(MCI)患者和HC之间的dFNC变化。我们使用了公开可用的ADNI数据集。使用相同的预处理和受试者选择程序,我们总共有838次扫描(104次AD患者扫描,470次MCI患者扫描,和264次HC扫描)用于分析。

      对于每次扫描,我们使用滑动窗口方法估计dFNC(Allen et al., 2014)。由于fMRI数据具有不同的时间分辨率,我们对具有较长重复时间(TR)的时间序列进行插值,以构建与具有最小TR和相同数据长度的数据具有相同时间分辨率的新时间序列。这个程序有助于控制不同时间分辨率对动态分析造成的潜在影响。在本文中,锥形窗口是通过将矩形(窗口大小= 40 TR = 24.3秒)与高斯(σ = 3)函数进行卷积得到的。这个窗口以1 TR的步长滑动,产生总共T = 468个窗口用于生成dFNC矩阵。

     对时变连接模式实施了K-means聚类分析(Allen et al., 2014),以捕捉时间和跨受试者出现的连接状态。L1范数被用作距离函数,以dFNC矩阵中的上三角(N(N-1)/2)值作为特征。通过肘部准则确定最佳聚类数为5,这在合理范围(4~7)内,并与之前对不同脑部疾病的dFNC研究一致(Rashid et al., 2014, Abrol et al., 2017, Du et al., 2018, Fu et al., 2018a, Fu et al., 2018b, Fu et al., 2019)。

    对于每个连接状态,我们通过计算分配给该状态的时间窗口数量占总窗口数量的百分比,计算了每个受试者的出现频率。为研究各状态频率的组间差异,在回归掉年龄和性别后进行了方差分析(ANOVA)。如果ANOVA结果显示诊断效应显著,则使用包含年龄和性别的广义线性模型(GLM)来检验任意两组之间的差异。

2.2.4. 研究4:双相障碍(BD)和重度抑郁障碍(MDD)的分类

     在研究4中,我们的目标是测试NeuroMark捕捉可用于分类症状相关疾病的功能网络标记的能力。我们专注于对BD和MDD进行分类,这两种疾病都可能表现出强烈的抑郁症状,在临床诊断中难以区分。使用了包括32名BD I型患者和34名MDD患者的静息态fMRI数据进行两组分类。更多受试者信息详见之前的研究(Osuch et al., 2018)。

      使用NeuroMark,为每个受试者估计了特定受试者的ICN(内在连接网络)和TC(时间序列)。由于扫描数据中小脑部分缺失,本研究未估计小脑ICN。为评估NeuroMark流程捕获的ICN空间图是否可以作为强有力的生物标记来分类BD和MDD患者,我们使用了无偏的10折交叉验证框架,其中十分之九的折用作训练数据,剩余的一折依次用作测试数据。与之前的工作(Osuch et al., 2018)一致,我们应用了带有sigmoid核的支持向量机进行分类。特征选择和模型训练仅基于训练数据进行。

     特征选择在分类中起着关键作用,特别是对于高维网络测量。在这项工作中,我们从每个功能域中提取最具辨别力的ICN,然后将所有功能域的辨别性ICN组合作为特征。为了找到每个域最具辨别力的ICN,我们在训练集内使用了基于前向ICN选择技术的内部10次10折交叉验证程序。基本上,ICN是根据内部测试数据的分类准确率一个接一个地添加的,使用内部训练数据构建的模型进行评估。然后,对于内部10折程序的每次运行,可以找到对应最高分类准确率的最优ICN组合。在最优ICN组合集中出现频率最高的ICN(跨不同重复)被验证为该域最具辨别力的ICN。之后,来自不同域的组合辨别性ICN被用作特征,使用外部训练数据训练模型。虽然之前的研究(Osuch et al., 2018)使用了自己数据的组信息,但使用NeuroMark计算的特定受试者ICN特征更加无偏。图2显示了我们的分类方法。

图片

图2. 使用脑功能网络(即ICN)作为特征分类BD和MDD患者的流程,其中应用了无偏的10折交叉验证程序。

     为量化分类结果,我们基于预测标签和诊断标签评估了多个指标,包括个别类别准确率、个别类别精确率、总体准确率、平衡准确率和平衡精确率(Cuadros-Rodriguez et al., 2016)。不同指标从不同角度反映结果。个别类别准确率报告了某一特定类别正确分类的受试者与该类别总受试者数的比率。个别类别精确率定义为某一特定类别正确分类的受试者数除以预测为该类别的总受试者数。总体准确率计算为所有类别正确分类的受试者与所有类别总受试者数的比率。此外,我们还计算了个别类别准确率的平均值,称为平衡准确率。个别类别精确率的平均值代表平衡精确率。对于每个指标,我们分别使用箱线图和小提琴图显示了不同重复的结果。

结果

3.1. 可靠的网络模板

      图3显示了从GSP数据集得到的53个ICN,这些ICN被设置为NeuroMark流程中的网络模板。图4显示了使用两个数据集中53个匹配ICN计算的相关矩阵,表明这些ICN在GSP和HCP数据集之间具有高度可重复性。关于原始的100个组级独立成分,两个数据集之间有81个成分相关性>0.4,58个成分相关性>0.6,18个成分相关性>0.8,如图5(A)所示。如果只考虑有意义的ICN,有53个ICN相关性>0.4,44个ICN相关性>0.6,16个ICN相关性>0.8,如图5(B)所示。值得指出的是,图4和图5(A)-(B)中反映匹配的两组功能网络或成分之间相似性的空间相关性是使用全脑体素(即60,358个体素)获得的,因为这些体素被作为NeuroMark的输入。如果仅使用每个ICN中具有正Z分数的重要体素计算相关性,两组ICN之间的对应关系(由相关性表示)会更高(见图5(C))。每个ICN中的正Z分数代表对ICN贡献最大的体素,因为每个ICN的偏度被改变为正,如2.1.1节所述。

图片

图3. 识别出的网络模板的可视化,这些模板根据其解剖和功能特性被划分为七个功能域。在每个子图中,复合图中的一种颜色对应一个ICN(内在连接网络)。

图片

图4. 匹配的两组功能网络之间的空间相关矩阵。可以看到对角线值很高,表明所选择的网络模板在GSP和HCP数据集之间是常见的且可重复的。

图片

图5. HCP和GSP数据集之间的对应关系。

(A) 相关性分别 > 0.4、>0.5、>0.6、>0.7、>0.8和 > 0.9的匹配组件数量。

(B) 相关性分别 > 0.4、>0.5、>0.6、>0.7、>0.8和 > 0.9的匹配有意义网络数量,其中相关性是使用全脑体素计算的。

(C) 相关性分别 > 0.4、>0.5、>0.6、>0.7、>0.8和 > 0.9的匹配有意义网络数量,其中相关性仅使用具有正Z分数的重要体素计算。注:corr表示相关性。

      这些ICN根据其功能和解剖角色被安排进入七个功能域(Allen et al., 2014),包括皮层下(SC:5个ICN)、听觉(AU:2个ICN)、感觉运动(SM:9个ICN)、视觉(VI:9个ICN)、认知控制(CC:17个ICN)、默认模式(DM:7个ICN)和小脑(CB:4个ICN)域。详细的组件标签和峰值坐标在表2中提供。

表2. 提取的网络模板信息。对于每个模板,包括其功能域、主要脑区和峰值坐标。这里,每个网络模板由一个独立成分(IC)表示。IC ID与脑区名称一起显示。

图片

3.2. 具有对应性和唯一性的特定受试者ICN

      如2.2节所述,我们评估了特定受试者ICN的对应性和唯一性。图6(A)和(B)使用箱线图显示了网络模板与每个数据集(如FBIRN)中所有受试者的特定受试者ICN之间的相似性,以及数据集中每个组(如FBIRN-SZ)的受试者的相似性。从图6(A)-(B)可以观察到,不同受试者之间的平均模板-ICN相似性接近0.5,这符合我们在目标函数优化中设计的期望。我们的结果支持模板-ICN对应性得到了很好的维持。此外,对应性测量在不同数据集和组之间相对可靠,表明我们的方法是有效的。图6(C)和(D)分别展示了每个数据集中所有受试者和每个组中受试者的ICN间相似性。不同ICN之间的平均受试者间相似性用条形图显示。结果表明,特定受试者ICN呈现出独特的模式,同时在受试者之间仍然具有可比性。

图片

图6. 特定受试者ICN的对应性和唯一性。

(A)使用箱线图显示每个数据集(如FBIRN)中所有受试者的网络模板与特定受试者ICN之间的相似性。

(B)显示数据集中每个组(如FBIRN-SZ)的受试者的相似性。在(A)和(B)中,箱线图中的每个样本表示一个受试者的模板-ICN相似性。

(C)使用条形图显示每个数据集中所有受试者的特定受试者ICN之间的相似性。

(D)显示数据集中每个组的受试者的相似性。在(C)和(D)中,受试者间ICN相似性用条形图显示。

注:相关性是基于全脑体素计算的。

3.3. NeuroMark的有效性

3.3.1. 研究1:精神分裂症中可重复的静态功能网络连接(sFNC)改变

      图7(A)和(D)分别显示了FBIRN和MPRC数据集中所有受试者的平均sFNC矩阵。两个数据集的sFNC矩阵显示了相似的模式,表明NeuroMark计算的连接性指标具有可比性。对于FBIRN数据集,图7(B)和(C)分别显示了从双样本t检验获得的T值和多重比较校正后的显著组间差异。使用MPRC数据集发现了类似的组间差异,如图7(E)和(F)所示,表明NeuroMark框架捕获到了可重复的精神分裂症相关功能连接异常。

图片

图7. 研究1的结果,显示FBIRN和MPRC数据集之间存在可重复的精神分裂症sFNC改变。

(A)和(D):FBIRN和MPRC数据集中所有受试者的平均sFNC矩阵。

(B)和(E):FBIRN和MPRC分别从双样本t检验获得的所有sFNC的T值。

(C)和(F):FBIRN和MPRC分别通过多重比较校正(p < 0.05,Bonferroni校正)的sFNC的T值。"BFN"表示Bonferroni校正。

(G):FBIRN和MPRC数据中共同受损的HC和SZ组的平均sFNC强度。对于每个共同改变的sFNC,分别显示FBIRN数据集SZ患者、MPRC数据集SZ患者和两个数据集HC的平均值。

      对于两个数据集,精神分裂症的脑功能异常主要位于SC(下皮层)和CB(小脑)域之间、SC(下皮层)和AU(听觉)域之间,以及SC(下皮层)和SM(感觉运动)域之间的连接。此外,基于图7(C)和(F)评估了共同显著改变的功能连接。与HC相比,SZ显示丘脑与小脑、尾状核与小脑、丘脑下与小脑之间的连接强度降低,但丘脑与中央后回、丘脑与颞上回、尾状核与中央后回、尾状核与颞上回以及丘脑下与颞上回之间的连接强度增加。图7(G)表明,尽管FBIRN数据集显示的平均功能连接强度略高于MPRC数据集,但它们在SZ患者中共同受损的连接非常接近。总的来说,我们的结果表明NeuroMark可以帮助识别跨数据集验证的功能连接异常。

3.3.2. 研究2:自闭症和精神分裂症显示共同和独特的静态功能网络连接(sFNC)改变

     对于ABIDEI数据,通过平均不同受试者的sFNC矩阵计算得到的平均sFNC矩阵(图8(A))显示了与研究1类似的连接模式,再次证明使用NeuroMark计算的网络特征是对应和可比的。统计分析显示HC和ASD之间的显著组间差异主要涉及SC、CB、AU和SM域,如图8(B)和(C)所示。

图片

图8. 研究2的结果,支持SZ和ASD在sFNC中显示共同改变。

(A):ABIDEI中所有受试者的平均sFNC模式。

(B)和(C):从ABIDEI的HC与ASD双样本t检验获得的所有sFNC的T值和通过多重比较校正(p < 0.05,Bonferroni校正)的sFNC的T值。"BFN"表示Bonferroni校正。

(D):SZ和ASD共同受损中每组(ASD、SZ和HC)的平均sFNC强度。对于每个共同受损的sFNC,分别显示ABIDEI的ASD患者、FBIRN和MPRC的SZ患者以及三个数据集的HC的平均连接值。

(E)和(F):FNC指标与临床症状之间的显著相关性(r和p值),p < 0.05。每个子图中还包括HC和疾病之间双样本t检验的T值。以(F)为例,它显示了ASD患者FNC指标(对应IC 69和IC 21)与ADOS评分之间的相关性。标题部分还显示了HC和ASD之间双样本t检验的FNC指标T值。

      虽然我们关于ASD改变的发现可以作为一个独立的结果,但我们有兴趣通过链接研究1和上述分析来获取额外信息。通过比较它们的结果,我们发现SZ和ASD在SC域与AU/SM/CB域之间有显著的重叠脑异常。具体来说,我们确定了SZ和ASD之间九个重叠的非典型sFNC。在SZ和ASD损伤的九个重叠中,四个功能连接显示小脑与丘脑(或尾状核)之间的连接减弱;四个功能连接显示颞上回与皮层下区域之间的连接增强;剩下一个显示中央后回与丘脑之间的连接增强(图8(D))。这九个共同改变的FNC中有两个与其中一种疾病的症状显示显著相关性(p < 0.05)(图8(E)-(F)),同时在另一种疾病中也显示类似的相关模式。此外,这些相关性与组间差异一致。以皮层下域的IC 69和听觉域的IC 21之间的连接为例,AD患者的FNC测量值与ADOS评分之间的相关性为正,HC与ASD之间的T值<0,支持这种连接的更强FNC强度可能与更严重的ASD状况相关。SZ和ASD在sFNC中也有其独特的脑异常。例如,SZ在VI域内显示异常低的功能连接,而ASD在CC域内显示功能连接改变,在DM域内功能连接减弱。

     总之,我们的NeuroMark框架可以识别跨不同脑疾病可比较的功能连接异常,这将为搜索多种脑疾病中的独特和共同脑变化提供极大便利,从而进一步推进我们对它们之间潜在相互关系的理解。

3.3.3. 研究3:轻度认知障碍(MCI)在健康对照(HC)和阿尔茨海默病(AD)之间表现出中间动态功能网络连接(FNC)变化

       图9显示了具有明显不同连接模式的已识别重复出现的脑状态。具体来说,占所有窗口>50%的状态2类似于sFNC模式;状态1显示SM和VI之间的负连接强度;相比之下,状态3显示SM和VI之间的强正连接。统计分析揭示,与HC相比,AD患者在那些弱连接的dFNC状态(即状态2和状态5)中出现频率显著增加,但在那些具有强连接模式的状态(即状态1和状态3,显示强相关和反相关连接强度)中出现频率减少。尽管MCI与HC/AD之间在状态出现频率上没有显著的组间差异,但MCI显示出与AD相似的变化趋势,只是程度相对较弱(图9,上面板)。当将MCI组分为早期MCI(EMCI)和晚期MCI(LMCI)组时,四个状态中的三个仍然在其出现频率上显示类似的逐渐变化模式(从HC到EMCI到LMCI再到AD,增加或减少)(图9,下面板)。

图片

图9. 研究3的结果。结果揭示了从健康对照(HC)到早期轻度认知障碍(EMCI)到晚期MCI(LMCI)再到阿尔茨海默病(AD)的逐渐变化模式,通过动态功能网络连接(dFNC)测量。

上:HC、MCI和AD之间dFNC状态出现频率分数的组间差异。

中:区分性dFNC状态,以及至少有一个窗口聚类到该状态的受试者数量。

下:HC、EMCI、LMCI和AD之间dFNC状态出现频率分数的组间差异。关于每个状态的出现频率分数,条形和误差条分别表示平均值和平均值的标准误差。显著的组间差异(假发现率校正,q = 0.05)用星号表示。

3.3.4. 研究4:NeuroMark捕获的功能网络特征作为分类双相障碍(BD)和重度抑郁障碍(MDD)的可靠生物标志物

     我们的结果表明,NeuroMark估计的功能网络(即ICN)可以作为分离BD和MDD的可靠生物标志物。如图10所示,平均总体分类准确率为91.3%,平均平衡准确率为91.2%,平均平衡精确率为91.5%。BD组的单类准确率为88.7%(精确率为93.8%),而MDD的单类准确率为93.3%(精确率为90.0%)。重要的是,我们观察到一些由IC 56、IC 33、IC 40、IC 98、IC 80和IC 20代表的功能网络在所有交叉验证运行中经常被选为特征(图11),这可能表明它们在分离BD和MDD中起关键作用。这些功能网络涉及中颞回、岛叶、楔前叶、壳核、顶上小叶和枕下回。

图片

图10. 研究4的结果。评估的指标包括双相障碍(BD)和重度抑郁障碍(MDD)的单类准确率(BD_acc和MDD_acc)、单类精确率(BD_prec和MDD_prec)、总体准确率(Overall_acc)、平衡准确率(Bala_acc)和平衡精确率(Bala_prec)。对于每个指标,我们分别使用箱线图和小提琴图显示100次分类运行的值。

图片

图11. 六个最具辨别力的ICN的空间图,每个ICN从一个功能域(即SC、AU、SM、VI、CC和DM)中选择。

4. 讨论

      目前脑疾病的诊断主要依赖于临床症状模式。神经影像学测量可能提供更客观、基于生物学的脑异常量化,从而作为潜在的生物标志物指导诊断和治疗。然而,人脑高度复杂,神经影像信号受到各种噪声的影响。这要求神经科学界分析可能来自多站点研究的大数据样本,以获得足够的统计能力来捕捉更可靠的发现。通过使用来自不同研究的神经影像数据研究多种脑疾病的脑改变,将推进我们对其潜在机制和关系的理解,这可能有助于重新定义疾病类别或开发新的亚型(Marquand et al., 2016, Du et al., 2018)。

      功能连接评估空间分布的脑区之间的交互作用,被认为与认知和许多心理活动相关(Bressler and Menon, 2010)。功能连接研究也改善了对脑疾病引起的功能改变的理解(Sheline et al., 2009, Öngür et al., 2010, Xia et al., 2019)。ICA是一种有前景的方法,可用于提取功能连接测量(Calhoun et al., 2001, Allen et al., 2014),如网络内连接(ICN的空间图)和网络间连接(功能网络连接)。与基于ROI的分析相比,ICA能够提取保留更多个体水平变异性的功能连接特征(Yu et al., 2017),这可能为跨疾病脑异常分析提供更多统计能力。然而,ICA是一种数据驱动的方法,可能导致跨数据集识别出不同的成分。这种识别成分及其排列的不一致性可能阻碍发现复制和跨研究比较。

      为解决这个问题,我们提出了NeuroMark流程,一种由可靠网络模板指导的先验驱动ICA,以实现不同数据集、研究和疾病之间的链接分析。在这个流程中,首先使用两个大样本HC群体(包括1828名受试者)生成网络模板,以自动维持网络的受试者间对应关系。使用这种先验信息可以大大减少搜索空间并提高检测有用生物标志物的可能性(Cohen et al., 2017)。然后,基于网络模板估计受试者特定的ICN(内在连接网络)和TC(时间序列),这个过程不仅维持提取网络的对应关系,还通过优化受试者特定网络独立性实现更多个体差异(Lin et al., 2010, Du and Fan, 2013)。

      为评估NeuroMark的效果,我们进行了四项研究,包括六种不同的脑疾病。从不同角度评估了NeuroMark的性能。总体结果明确支持NeuroMark能够捕捉可在数据集间复制和跨脑疾病比较的功能连接异常。NeuroMark还在表征渐进发展疾病的非典型动态功能连接特征方面表现出良好的能力。更重要的是,NeuroMark提取的功能连接特征可以作为可靠的生物标志物,用于脑疾病的分类。

      在研究1中,我们使用NeuroMark流程探索了两个独立的SZ数据集中的全脑sFNC异常。在数据集间观察到类似的sFNC异常,主要涉及皮层下、感觉和小脑网络。具体来说,SZ在皮层下网络(包括丘脑和尾状核)与感觉网络之间显示增加的sFNC。这些发现在数据集间得到验证,与先前使用基于图谱和ICA方法报告的皮层下和感觉区域之间的高连接性一致并显著扩展(Woodward et al., 2012, Anticevic et al., 2014, Damaraju et al., 2014a, Damaraju et al., 2014b, Fu et al., 2018a, Fu et al., 2018b)。例如,Woodward等人通过评估丘脑区域与其他皮层区域之间的连接性,显示SZ在丘脑和体感区域之间存在增加的连接性(Woodward et al., 2012)。Chen等人(2019)揭示丘脑与感觉运动区域的高连接性与SZ认知缺陷和临床症状的严重程度相关。使用ICA的研究还从静态和动态角度揭示了SZ患者皮层下和感觉网络之间FNC强度增加(Damaraju et al., 2014a, Damaraju et al., 2014b)。

      皮层下区域是重要的感觉门户,接收并向皮层区域传递信息,支持基本脑功能和行为。丘脑在视觉、听觉、运动活动、情感、记忆和感觉运动联合功能中起重要作用,尾状核整合空间信息与运动行为形成。考虑到我们结果中皮层下和感觉区域之间的负功能连接,我们观察到的SZ中增加的sFNC可能表明这些区域之间的功能连接异常。皮层下和感觉区域之间的这种断开可能影响SZ大脑中的信息流,进而可能导致认知缺陷和其他临床症状。我们观察到皮层下网络和小脑之间sFNC重复减少,这也与先前的发现一致(Andreasen et al., 1998, Anticevic et al., 2014)。使用大样本SZ患者,Anticevic等人发现患者丘脑与小脑区域之间存在低连接性(Anticevic et al., 2014)。尽管小脑以前被视为运动协调的关键节点,但越来越多的文献表明它可能参与人类广泛的认知功能(Buckner, 2013)。最近使用大规模神经影像数据的研究已记录了小脑的结构和功能与精神分裂症之间的潜在关联(Cao and Cannon, 2019)。我们的结果提供了额外的证据,支持小脑功能障碍,特别是皮层-皮层下-小脑回路功能障碍参与精神分裂症的发病机制(Cao and Cannon, 2019)。总的来说,研究1的结果突出了NeuroMark作为捕捉可重复连接变化工具的潜力。

       在研究2中,NeuroMark流程被应用于一个开源数据集,用于研究自闭症谱系障碍(ASD)中的静态功能网络连接(sFNC)异常。借助NeuroMark,提取的独立成分网络(ICNs)不仅保留了受试者特定的可变性,而且与研究1中的顺序和排列相同,使得比较两项独立研究的结果成为可能。综合他们的结果,我们发现皮层下网络在精神分裂症(SZ)和ASD中都受到显著影响。与SZ类似,ASD中也发现小脑与丘脑/尾状核之间的sFNC降低,以及丘脑与颞上回/中央后回之间的sFNC增加。一项先前使用基于ICA的fMRI分析的研究(Cerliani等,2015)也显示,ASD中包含丘脑的网络与感觉运动网络之间的连接增加。事实上,皮层下-皮层脑连接的破坏,尤其是丘脑与感觉区域之间的连接破坏在文献中已被广泛记录(Minshew和Keller,2010;Fu等,2019)。丘脑与皮层区域之间的连接断裂被认为是ASD中非典型感觉处理的潜在原因(Fu等,2019)。我们的结果表明,SZ和ASD中非典型的丘脑-皮层连接可能是两种疾病中小脑-丘脑-皮层通路相同损伤的基础(Andreasen等,1998;Bailey等,1998)。虽然我们的发现与先前的工作一致,但本文首次直接显示了SZ和ASD在这些变化方面的重叠。除了这些共同的sFNC异常外,我们发现ASD还显示了涉及认知控制和默认模式域的独特变化。我们的结果与在默认模式网络(DMN)内部以及DMN与涉及高级认知处理的网络之间观察到的异常功能连接一致(de Lacy等,2017)。另一项动态功能连接研究发现,ASD诊断的儿童在具有强DMN连接的动态状态下花费的时间较少,这可能导致整体DMN连接性降低,与我们的发现一致(Rashid等,2018)。SZ和ASD目前被认为是不同的障碍,但它们在社交退缩和沟通障碍等症状上有重叠(Ford等,2017)。从历史上看,精神分裂症和自闭症甚至曾被认为是在不同发展时期表现出来的同一种障碍。使用像NeuroMark这样的标准化流程来探索SZ和ASD中的共同和独特大脑变化,将有助于提高我们对这些临床上重叠的疾病之间神经关系的理解,并提供暗示其可能潜在机制的生物学证据。

     人脑是一个高度动态的系统,自发性脑活动和连接性具有丰富的动态特性(Leonardi和Van De Ville, 2015)。越来越多的证据表明,对动态功能连接的研究将提供更多关于大脑功能和组织的信息,而这些信息无法通过静态功能连接来探测(Chang和Glover, 2010)。动态功能连接的研究也提高了对受损大脑和脑疾病导致的功能改变的理解(Du等,2016)。在研究3中,我们测试了NeuroMark在从大规模成像数据中捕获动态功能连接特征方面的表现。通过NeuroMark框架,我们研究了在症状严重程度呈连续谱的脑疾病(从轻度认知障碍到阿尔茨海默病)中的非典型动态功能网络连接(dFNC)。我们识别出了五种具有高度可变连接模式的状态,展示了静息状态下脑网络之间功能协调的灵活性。与健康对照(HC)相比,阿尔茨海默病(AD)患者在弱连接状态下出现更多,但在强连接状态下出现较少,这与我们之前从另一个独立数据中观察到的结果一致(Fu等,2019)。我们推测,弱连接状态的增加但强连接状态的减少会导致区域间通信的中断,从而影响痴呆大脑中基本脑功能的维持。在其他脑疾病中也发现了类似的观察结果,包括双相障碍(Rashid等,2014)、精神分裂症(Damaraju等,2014a,Damaraju等,2014b,Du等,2016b)和自闭症(Fu等,2018a,Fu等,2018b)。有趣的是,我们观察到轻度认知障碍(MCI)显示出与AD相似的变化趋势,但程度较弱。MCI被认为是HC和AD之间的中间阶段,我们的结果表明MCI中的生物学变化也显示出HC和AD之间的中间状态。我们进一步将MCI组分为早期MCI(EMCI)和晚期MCI(LMCI),这种现象也可以在从HC到EMCI到LMCI再到AD的动态特征中观察到,表明神经退行性疾病中存在持续变化。研究3的汇聚结果显示,NeuroMark是一个有效的框架,可以捕获有助于表征痴呆认知障碍进展的微妙dFNC差异。

     在研究4中,我们测试了由NeuroMark捕获的功能连接特征是否可以作为可靠的生物标志物,有助于区分不同的疾病组。通过NeuroMark提取的ICN空间图被用作双相障碍(BD)和重度抑郁障碍(MDD)患者分类的输入,这两种患者具有高度重叠的抑郁症状,通常在临床实践中难以区分。我们实现了>90%的总体准确率和平衡准确率,这与之前试图区分BD和MDD的工作相当(Jie等,2015,Osuch等,2018)。然而,Osuch等人使用所有MDD和BD数据进行成分分解,这使得他们难以将他们的发现扩展到新来的受试者或另一个独立的数据集。我们的结果表明,尽管由于难以将这些方法应用于新来的数据,在常规临床中使用功能网络特征和复杂的分类算法是不切实际的,但NeuroMark框架可能有助于克服这一问题。我们的结果还表明,有助于区分BD和MDD的最重要区域是中颞回、岛叶、楔前叶、豆状核、顶上回和枕下回。这些区域的异常在MDD(Wang等,2012,Peng等,2015,Schreiner等,2019)或BD(Favre等,2014)文献中已被广泛报道。我们的结果表明,尽管这些区域在MDD和BD中都显示出非典型模式,但它们的异常可能与情绪障碍的不同病理生理学有关,并可能特别有助于区分具有挑战性情绪诊断的患者。

局限性:

      尽管NeuroMark在提取可比较和可重复的功能连接异常方面显示出巨大的潜力,这些异常可以作为跨脑疾病的有价值标志物,但一个局限性是目前的网络模板仅基于两个独立的HC数据集获得。随着更多在不同条件下收集的数据集被纳入,模板可以逐步改进和完善,希望生成具有更高可重复性的功能网络模板。由于跨多个组匹配组级网络很困难,因此需要一种有效的匹配技术来找到高度可重复(匹配)的网络作为模板。此外,网络模板是使用更高的模型阶数(IC数量= 100)估计的。在未来,我们将探索不同分区级别的网络估计。考虑到我们方法中链接不同数据集、研究和疾病的能力,我们还计划提供一个实现这种方法的云计算平台。我们希望通过使用NeuroMark,功能连接特征可以在众多脑疾病中广泛研究和比较。在本文中,我们没有在四项研究中将NeuroMark与其他流程(如其他组ICA和ROI方法)进行比较,因为我们更感兴趣的是所提出流程在广泛范围内的应用。然而,我们之前的研究(Du和Fan,2013,Du等,2016a,Salman等,2019)已经显示了NeuroMark核心(即GIG-ICA)在估计个体网络方面的强大能力的优越性。在这项工作中,我们验证了在NeuroMark中可以捕获网络特征的独特属性,同时网络模板和个体ICN之间的对应关系得到很好的维持。我们还发现,模板-ICN相似性在不同数据集和人群中相对稳定(如3.2节所示)。此外,我们还调查了网络模板与具有不同年龄和头部运动参数的组间特定受试者ICN之间的相关性。如补充部分S4所示,我们的结果表明年龄和头部运动并未对对应关系测量产生很大影响。我们想指出,在这项工作中,我们在统计分析之前仔细回归了年龄、性别和站点效应(见S3节),并在预处理和FNC计算步骤中处理了运动,这最大限度地减少了这些效应对组间差异的污染。

       我们还想提到,在本文中,我们在研究1-3中在诊断标签的指导下识别了组间差异,并在研究4中使用相信类别标签获得的模型和特征对不同受试者进行分类。我们的工作符合神经科学领域大多数先前研究的做法(Du等,2018),然而,显然诊断标签可能不准确。在神经影像技术的帮助下完善精神障碍分类已引起了很多兴趣(Insel等,2010,Cuthbert和Insel,2013,Fusar-Poli等,2019),无监督或半监督聚类是解决重新分组问题最流行的方法(Marquand等,2016)。最大的困难是在缺乏组标签信息的情况下选择好的度量,这些度量可以反映受试者的独特特征,同时仍然跨受试者对应,以用作聚类的特征。我们相信NeuroMark有助于促进这个问题的解决,因为我们的研究支持NeuroMark可以捕获微妙的数据变化,并且可以轻松实现数据的链接。

其他应用:

      尽管当前的NeuroMark框架仅应用于fMRI数据集的分析,但它也可以扩展到其他模态。以结构性MRI为例,基于源的形态测量(SBM)(Xu等,2009,Bergsland等,2018),一种基于体素的形态测量(VBM)的多变量版本,将ICA应用于灰质图以检测受试者之间的共同协变和受试者相关权重。显然,SBM的结果在不同数据集和运行中会有所不同。使用我们的方法以可靠的先验作为指导,可以链接协变模式,从而在不同数据中得到可比较的权重作为特征(请参见此处的基于回归的示例(Silva等,2014))。组ICA也适用于分析脑电图(EEG)数据。先前的研究(Huster等,2015,Huster和Raud,2018)通过在空间维度上连接数据来提取EEG源(另见EEGIFT软件:http://trendscenter.org/software)。在不同模态中生成先验源以指导个体源计算将是一项持续的努力。

结论:

     总之,我们提出了一个基于ICA的框架,以推广和标准化可能的功能连接特征的计算,该框架利用了数据驱动方法的优势,同时还提供了跨多个分析的可比性。通过四项不同的示例研究,我们强调了该框架的有效性。我们希望这将成为最终在临床中应用此类方法的有用垫脚石。

原文:NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值