脑小血管病负担与中风后的认知和功能结果

引言
     目前尚不清楚全球小血管病(SVD)负担是否能预测中风后的结果。

方法
     在一项前瞻性多中心研究中,涉及666例缺血性和出血性中风患者,我们量化了基于磁共振成像(MRI)的小血管病标记(腔隙、白质高信号、微出血、血管周围间隙),并探索了它们与6个月和12个月后的认知(15项神经心理学测试的电池)和功能(修订Rankin量表)结果的关联。

结果

     全球SVD评分(范围0-4)与认知障碍相关;在执行功能、注意力、语言和视觉空间能力方面表现更差;以及在12个月的随访中功能结果较差。尽管全球SVD评分未能改善预测效果,但在评估其严重程度范围内,个体SVD标记提高了预测模型(包括人口统计学、临床和其他成像因素)的校准、区分度和重新分类能力。

讨论
      SVD的存在和严重程度与中风后12个月认知和功能结果较差相关。评估SVD的严重程度可能有助于预测中风患者的预后。本文发表在Alzheimer's & Dementia杂志。

亮点

  • 在多中心队列中,我们探索了小血管病负担与中风结果的关联。

  • SVD负担与中风后的认知和功能结果相关。

  • 目前使用的SVD负担评分并未改善预后不良结果的预测。

  • 评估SVD损伤的严重程度在已知预测因素的基础上增加了预测价值。

  • 为了提高SVD负担评分在中风患者中的预测价值,应整合病变的严重程度。

1. 引言     

     全球中风幸存者的比例不断增加,将关注从急性期的早期并发症转向中风后的长期后果。认知和功能缺陷存在于多达80%的中风幸存者中,具体取决于定义和评估时间点。这些缺陷与残疾、依赖性和疾病相关,因此对患者、照护者和卫生保健系统构成重大负担。为了给患者提供建议并识别可能从定向干预中受益的高风险个体,需要更详细地了解那些易受长期后果影响的因素。

     脑小血管病(SVD)约占所有中风的25%,是血管性痴呆的主要原因。SVD在磁共振成像(MRI)上的成像特征包括腔隙、白质高信号(WMH)、脑微出血(CMB)和扩大的血管周围间隙(PVS)与普通人群相比,中风患者有更高的SVD负担。单独的SVD标记与较差的结果相关,包括较高的痴呆、残疾、中风复发和死亡风险,但它们的综合预测价值尚未系统探索。因此,SVD测量作为可追踪的风险因素和预测中风后不良结果的因素,吸引了越来越多的关注。

     更近期的研究集中在全球SVD负担的综合度量,这通过量化个别病变(腔隙、WMH、CMB和扩大的PVS)并将它们结合为一个单一评分来生成。基于MRI的全球SVD评分范围从0到4(每种SVD标记存在时奖励1分),并且与普通人群中的认知表现和痴呆风险有很强的关联。然而,其在预测中风患者的认知和功能结果方面的表现仍不清楚。以往的研究集中在特定患者亚群体,例如腔隙性中风患者或接受溶栓治疗的患者,使用认知筛查工具而不是详细的神经心理学测试进行结果评估,且随访时间较短(6个月),此时恢复仍在进行中。此外,评估全球SVD评分的预测性能尚未与单个SVD标记的严重度的视觉评分进行比较。

      本研究旨在确定基于基线MRI评估的SVD全球负担是否能够预测中风后12个月的认知和功能结果。我们探索了全球SVD评分以及个体SVD标记与认知和功能终点的关联。此外,我们测试了全球SVD评分对于认知和功能障碍的预测价值,并将其与个体SVD标记所获得的预测价值进行了比较。为此,我们使用了来自前瞻性多中心研究的数据,该研究设计旨在识别中风后长期认知结果的预测因素。

2. 方法
2.1 研究人群
     本研究的参与者来自DEMDAS研究(DZNE [德国神经退行性疾病中心]—中风后痴呆机制),这是一个多中心前瞻性医院队列研究,在德国七个三级中风中心进行。该研究始于2011年5月到2013年11月的单中心试点研究,该研究招募了136名患者,随后扩展为多中心研究(DEMDAS),并在2014年1月至2019年1月期间招募了另外600名患者。有关研究协议和DEDEMAS的详细信息已在之前的出版物中发表。该研究的临床和成像协议的详细描述见补充部分(补充方法、表S1、S2、图S1、S2)。

2.2 标准协议审批、注册、患者同意和数据可用性
     本研究遵循《观察性研究报告标准》(STROBE)准则。DEDEMAS和DEMDAS按照赫尔辛基宣言进行,已获得所有参与地点的当地伦理委员会批准。所有患者或其法定监护人在研究纳入前提供了书面知情同意书。

2.3 基线评估     

     研究参与者接受了综合访谈,使用标准化问卷以及临床、认知和实验室评估。记录了详细的社会人口学数据、家庭和病史以及所用药物。评估还包括生理学评估(例如血压和体重指数测量)、临床评估(例如美国国立卫生研究院中风量表[NIHSS]、修订Rankin量表[mRS]、格拉斯哥昏迷量表[GCS])以及认知筛查测试(简易精神状态检查[MMSE]和蒙特利尔认知评估[MoCA])。所有入选患者在中风后的中位时间1天(四分位范围:1—2天)内进行了外周血采样(>85%的样本在早晨采集),并按临床常规进行了生化评估。

2.4 MRI采集、中风病灶体积和SVD评分
     患者在中风发作后的3天(DEDEMAS研究)或5天(DEMDAS研究)内接受了颅脑3T MRI检查。成像协议的详细信息见补充部分(补充方法,表S2)。急性中风病灶在DWI图像上使用半自动程序进行了分割,详细过程见补充方法。中风病灶体积根据T1图像测量的总颅内体积进行了归一化。我们使用广泛接受的共识标准半定量评估基线MRI上的SVD标记。评估了以下个体SVD标记:

   (1)腔隙:腔隙定义为圆形或椭圆形、皮层下、脑脊液(CSF)样信号的病灶,轴向直径在3 mm到15 mm之间,见于流体衰减反转恢复(FLAIR)和T1加权图像上;

   (2)白质高信号(或WMHs):根据Fazekas量表在FLAIR图像上将脑室周围和深部WMH病灶分级为0到3;

  (3)脑微出血(或CMBs):在T2*加权图像上呈小(2—10 mm)、圆形信号空白;

  (4)基底节扩大的血管周围间隙(PVSs):PVSs是液体充填的空间,在T2加权图像上呈现线状或圆形/椭圆形的高信号,在T1加权图像上呈低信号(CSF样信号),轴向直径<3 mm,沿基底节和半卵圆中心的穿透动脉走向分布。在基底节中双侧计数PVSs,并选择T2加权和T1加权图像上PVSs数量较多的一侧进行评分,依据Staals等人25 和MacLullich等人38 提出的初步方法进行评分:0 = 无PVSs,1 = <10个PVSs,2 = 11至20个PVSs,3 = 21至40个PVSs,4 = >40个PVSs。

     病灶内的腔隙、WMHs、CMBs和PVSs不计入评分。所有图像均由经验丰富的训练评估员(R.F.)在不了解临床数据的情况下进行评分,疑难病例则在定期的共识会议中与资深成像专家(M.Dür.)讨论。为了确保评分的可重复性,两位训练评估员(R.F.和A.D.)对图像子样本进行了评分一致性评估:腔隙的κ值 = 0.720,WMHs的κ值 = 0.795,CMBs的κ值 = 0.725,PVSs的κ值 = 0.815。对于每个参与者,我们使用先前验证的评分从0到4量化了全球脑部SVD负担。对以下每种病变分配1分:(1)腔隙的存在,(2)脑室周围WMH Fazekas 3级或深部WMH Fazekas 2或3级,(3)CMB的存在,以及(4)PVS 2级或更高。

2.5 随访结果
     研究参与者在中风后6个月和12个月通过面对面访谈进行了全面的认知和功能评估。进行了全面的神经心理学测试电池,并将其分类为五个领域(执行功能、记忆、语言、注意力和视觉空间功能;表S1,补充方法)。记忆领域是由词汇学习、回忆、识别以及图形即时和延迟回忆测试组成的综合体。个别测试的缺失值及其缺失原因见表S4—S6。我们根据已发布的标准,针对年龄、性别和教育水平修正后的规范计算了特定测试的z分数(“神经心理学测试电池”部分见补充方法)。然后通过平均每个领域中可用的特定测试z分数,计算了领域特定的z分数,并通过平均五个领域的z分数计算了全局认知分数。若五个领域中的任何领域的z分数< −1.5,则定义为认知障碍。领域特定的认知障碍也基于该领域的z分数< −1.5进行定义。功能结果通过修订Rankin量表(或mRS)进行评估,这是一个专注于运动恢复的全球功能量表(分数范围从0 [无症状]到5 [严重功能障碍]),Barthel指数(BI),评估功能依赖性(分数范围从0 [完全依赖]到100 [完全独立]),以及日常生活工具性活动(IADLs),评估在八项日常活动中的独立性(分数范围从0 [在任何任务中无独立性]到8 [完全独立])。对所有测试,均考虑患者及其知情人的信息。我们使用两种独立定义的功能障碍不同级别,基于两种广泛应用的mRS切点(>1和>2)。

2.6 统计分析
     我们使用χ2或Fisher精确检验比较研究参与者的基线特征,对于符合正态分布的变量(年龄和体重指数)使用双尾t检验,对于其他连续变量使用Mann–Whitney U检验。为了考虑主要结果在两个随访时间点的重复评估,我们应用广义估计方程(GEE)模型探索基线SVD病灶与中风后6个月和12个月的认知和功能结果之间的关联。我们测试了(1)全球SVD评分(范围0-4),(2)四个组成子评分(腔隙存在为0或1,脑室周围WMH 2级或深部WMH 2级以上,CMB存在,PVS 2级以上),以及(3)五个个体SVD标记的全范围(腔隙计数、脑室周围WMH分级、深部WMH分级、CMB计数、PVS分级)。使用GEE,我们拟合了用于连续认知和功能结果的广义线性回归模型(全局认知表现和五个个体领域的z分数,mRS,IADL,BI),以及用于二元结果的逻辑回归(认知障碍:全球认知表现或个别领域的z分数< −1.5;功能障碍:mRS >1和mRS >2)。为了探索基线全球SVD评分与个体时间点的认知和功能结果之间的关联,我们应用了多元线性回归和多变量逻辑回归分析。我们调整了年龄、性别和教育年限(基本模型),以及心血管风险因素(高血压、糖尿病、房颤、既往中风、吸烟、饮酒、体重指数、低密度脂蛋白胆固醇[LDL-C]水平)、中风严重程度(基线NIHSS评分)、既往mRS、急性期中风后的认知障碍(若无MoCA,MoCA <26或MMSE <24)以及基线的中风病灶体积(主要模型)。这些因素已被报道与中风后结果相关。在敏感性分析中,我们还调整了载脂蛋白E(APOE)基因型(0、1或2个ε4等位基因)。

     为了检验评估全球SVD评分在预测中风后6个月和12个月认知和功能障碍中的价值,我们比较了不同逻辑回归模型的表现:模型1包括年龄、性别、教育、血管风险因素、NIHSS和急性期的认知障碍;既往mRS;以及标准化的中风病灶体积。模型2还包括全球SVD评分。模型3则包括个体SVD标记而非全球SVD评分。我们使用Hosmer-Lemeshow检验进行模型校准,并使用集成校准指数(ICI)比较模型, 该方法是通过Loess平滑函数衍生的,比较观察到的事件频率与模型预测风险。为了区分度,我们比较了受试者工作特征曲线(ROC曲线)下的面积。最后,我们使用Net Reclassification Index(NRI)测试模型之间的重新分类变化。当个体的预测风险≥30%时,我们认为其有较高的认知或功能障碍风险;当其预测风险<10%时,我们认为其有较低的风险。为了控制多重比较,我们使用虚假发现率(FDR)方法调整P值,并将统计显著性设置为FDR调整后的P < 0.05。统计分析使用R v4.0.4进行。

图片

注: 数值以n(%)、均值 ± 标准差(SD)或中位数(四分位距)表示。
缩写: APOE,载脂蛋白E;BI,Barthel指数;BMI,体重指数;DBP,舒张压;HbA1c,糖化血红蛋白;HDL-C,高密度脂蛋白胆固醇;IQCODE,老年人认知衰退信息问卷;LDL-C,低密度脂蛋白胆固醇;MoCA,蒙特利尔认知评估;MRI,磁共振成像;mRS,修订Rankin量表;NIHSS,美国国立卫生研究院中风量表;SBP,收缩压。
a 由自我报告问卷提供。
b MoCA <26 或当MoCA不可用时,简易精神状态检查(MMSE)<24(占总数的5.3%)。
c 中风病灶体积/总颅内体积。

     个体SVD标记的频率和负担见图2。最常见的SVD标记是WMH(46.8%的研究参与者具有深部病灶Fazekas分级≥2或脑室周围病灶Fazekas分级>2),其次是PVS(35.6%在基底节中具有≥2级),腔隙(12.8%)和CMB(9.8%)。当合并为全球SVD评分时,38.9%的参与者的总评分为0(无符合评分标准的SVD病变),30.2%的评分为1(单一病变类型),20.4%的评分为2(两种病变类型),仅8.1%和2.4%的参与者评分为3和4。

图片

图2 在研究人群中显示了脑小血管病(SVD)的磁共振成像(MRI)标记和个体病变类型的分布
(A) 来自DEDEMAS(中风后痴呆的决定因素)-DEMDAS(DZNE [德国神经退行性疾病中心]-中风后痴呆机制)研究的患者的代表性图像,显示了流体衰减反转恢复(FLAIR)序列中的腔隙、FLAIR序列中的广泛白质高信号(WMHs)、梯度回声T2加权(T2*)轴向序列中的脑微出血(CMBs)以及T2加权图像中的扩大的血管周围间隙(PVSs)。病变由箭头标示,并在各自图像的上角放大显示。
(B) 研究参与者中个体病变类型的分布。红色条形表示在全球SVD评分中赋予积分的值(总评分范围0-4)。WMHs使用Fazekas量表评分,PVSs按照Doubal等人的建议评分。

3.2 全球SVD评分与认知和功能结果的关联
     在中风后6个月或12个月,595(89%)和563(85%)名参与者分别进行了随访,因此纳入了我们的分析(图1,方法S1)。去世或失访的患者较年长,基线时的收缩压较高,且基线MoCA评分(MoCA <26)定义的认知障碍发生率较高(表S13)。在6个月时,148名(27.6%)研究参与者符合认知障碍标准,127名(21.7%)的mRS评分>1,50名(8.6%)的mRS评分>2,符合功能障碍标准。中风后6个月到12个月,认知和功能结果均有所改善。12个月时,认知障碍、mRS >1 和 mRS >2 的比例分别为19.2%(N = 97),19.8%(N = 107)和5.9%(N = 32)。如图3所示,基线时全球SVD评分较高的患者在认知测试中得分较低,12个月随访时mRS评分较高。值得注意的是,6个月到12个月的改善在按全球SVD分组的患者亚群中均有所体现。

图片

图3 全球脑小血管病(SVD)评分(1分递增,范围0–4)与中风后12个月随访的认知和功能结果的关联。
     (A) 基线MRI评估的全球SVD评分类别下,中风后6个月(M6)和12个月(M12)的全球认知表现的均值复合z分数。误差条表示每个条形的均值标准误差(SE)。
     (B) 基线MRI评估的全球SVD评分类别下,研究参与者在M6和M12时的修订Rankin量表(mRS)评分分布。
     (C) 基线全球SVD评分与全球认知得分(五个认知领域的复合z分数)和修订Rankin量表(mRS)评分在12个月随访中的关联,包括6个月和12个月的结果,在调整了年龄、性别、教育、血管风险因素、NIHSS和急性期MoCA评分、既往mRS以及标准化中风病灶体积(中风病灶体积/总颅内体积)后,使用线性广义估计方程(GEE)模型进行分析。关联估计值为β值(β)及其95%置信区间(CIs)。
     (D) 基线全球SVD评分与认知障碍(复合z分数< −1.5或任一认知领域z分数< −1.5)和功能障碍(mRS >1或mRS >2)在12个月随访中的关联,包括6个月和12个月的结果,在使用逻辑GEE模型调整上述变量后进行分析。关联估计值为比值比(OR)及其95%置信区间(CIs)。P值使用虚假发现率(FDR)方法进行多重比较校正。*Pcorr. < .05,**Pcorr. < .01

     基线全球SVD评分与认知表现较差和mRS评分较高在12个月随访中均有相关性,经调整了人口学特征、血管风险因素和中风特征后(认知表现的β值:−0.08,95%置信区间[CI]:−0.14至−0.03,P = .005;mRS的β值:0.14,95%CI:0.06至0.22,P = .0006,图3C)。观察二元结果时,我们同样发现基线SVD评分与全球认知障碍(比值比[OR]:1.31,95%CI:1.09至1.58;P = .005),以及功能障碍的显著关联,无论是mRS >1(OR:1.34,95%CI:1.13至1.60,P = .0009)还是mRS >2(OR:1.42,95%CI:1.08至1.86,P = .01,图3D)。对个别认知领域的分析显示基线全球SVD评分与执行功能和注意力的表现有显著关联(图S4)。观察二元结果时,基线全球SVD评分与除记忆外的所有认知领域的损伤有显著关联(图S5)。

     敏感性分析的结果与主要分析一致(图S4–S7)。具体来说,当仅调整年龄、性别和教育时,或在临床、成像预测因素的基础上再调整APOE基因型时,分析结果保持稳定;当单独分析6个月和12个月的研究结果时,关联结果也保持一致。基线全球SVD评分与从6个月到12个月的全球认知表现或mRS变化无显著关联(P = .8183和P = .1969,分别;图S8)。

3.3 个体SVD标记与认知和功能结果的关联
     我们接下来探讨了个体SVD病变的存在与严重程度与中风后认知和功能结果的关系(图4)。在进行多重检验校正后,全球SVD评分的四个组成子评分(二元变量)与前12个月的任何连续或二元认知和功能结果之间没有显著关联。相反,当分析整个严重度范围的SVD标记时,多个显著关联出现。总体而言,腔隙计数表现出最强的关联,全球认知得分、领域特定认知得分、mRS评分和相应的二元结果(除了记忆之外)均表现出显著关联。深部和脑室周围WMH的分级与全球认知、执行功能、注意力、视觉空间能力和功能状态的较差结果显著相关CMB计数与执行功能的得分较低显著相关,而PVS分级与功能障碍相关(图4)。

图片

图4 全球脑小血管病(SVD)评分(1分递增,范围0–4)、评分的个体成分(存在与否)和个体SVD病变负担与中风后12个月随访的认知和功能结果的关联热图。
    (A) 与连续结果的关联:全球认知得分(五个认知领域的复合z分数)、个体认知领域得分、修订Rankin量表(mRS)、Barthel指数(BI)和日常生活工具性活动(IADLs)在中风后12个月随访中的关联。热图包括标准化的β值(β)及其95%置信区间(CIs),通过调整年龄、性别、教育、血管风险因素、NIHSS和急性期MoCA评分、既往mRS以及标准化中风病灶体积(中风病灶体积/总颅内体积)的广义估计方程(GEE)模型得出。
    (B) 与二元结果的关联:全球认知障碍(复合z分数< −1.5或任何认知领域z< −1.5)或各个认知领域的认知障碍,以及功能障碍(mRS >1或mRS >2)在中风后12个月随访中的关联。热图包括标准化的比值比(OR)及其95%置信区间(CIs),通过调整上述变量的逻辑GEE模型得出。P值使用虚假发现率(FDR)方法进行多重比较校正。NIHSS,美国国立卫生研究院中风量表;MoCA,蒙特利尔认知评估。*Pcorr. < .05,**Pcorr. < .01,***Pcorr. < .001

     我们进一步探讨了左、右半球中风的SVD与认知和功能结果的关系,结果相似(图S9,S10)。当我们在模型中进一步调整了一个替代性病灶位置评分,捕捉了策略性中风位置对中风后认知障碍风险的影响时,结果仍与我们的主要模型一致(图S11)。为了探讨我们的结果是否在脑萎缩存在的情况下仍然稳健,我们还在模型中调整了标准化的全脑体积,结果高度一致(图S12)。排除有既往中风前情绪、焦虑或精神障碍病史的患者,或进一步调整抑郁(流行病学研究中心-抑郁量表)和冷漠(Starkstein冷漠量表),中风后6个月和12个月的评分也未实质性影响我们的结果(图S13—S15)。最后,调整研究地点也没有改变我们的主要发现(图S16)。

SVD负担对认知和功能结果的预测价值

     作为最后一步,我们探讨了评估全球SVD评分在预测二元结果中的价值,超越了公认的预测因子,并比较了包括全球SVD评分的预测模型与考虑单个SVD病变严重度的模型的表现。我们比较了三个模型之间的校准、区分度和分类变化:(1)仅考虑人口统计学、临床和成像预测因子的模型(模型1);(2)包含全球SVD评分的模型(模型2);(3)不使用全球SVD评分而是包括所有个体SVD标记及其严重度范围的模型(模型3)。

     尽管所有模型的总体校准都很好(所有Hosmer-Lemeshow衍生的拟合优度P > .05,表S19),但包含个体SVD标记的模型3在预测12个月时的认知和功能障碍(以mRS >1定义)方面的校准显著优于模型1和模型2(图5A)。类似地,模型3在预测12个月后认知障碍方面显著提高了区分度,如与模型1相比,曲线下面积(c = 0.72,95% CI:0.66至0.78与0.69,95% CI:0.63至0.75;P = .036,图5B)。相反,我们发现将全球SVD评分纳入模型2后,与模型1相比,6个月或12个月时在认知障碍或功能障碍预测方面没有改善校准或区分度(图5B,图S17,表S20)。最后,我们测试了三种模型之间的重新分类变化(表S21,S22)。再次发现,模型3,包括个体SVD病变,优于模型1和模型2,包括全球SVD评分,在正确重新分类患者的认知和功能障碍风险(低风险<10%,中等风险10%至<30%,高风险≥30%)方面,尤其是在12个月时。

图片

图5 用于预测中风后12个月认知和功能障碍的校准曲线和受试者工作特征(ROC)曲线,源自不考虑脑小血管病(SVD)、包括全球SVD评分和包括个体SVD病变及其负担的模型。
(A) 校准曲线和(B) ROC曲线来自三个模型,预测认知障碍(复合z分数< −1.5或任一认知领域z < −1.5)(左面板),以及以修订Rankin量表(mRS)评分<1(中面板)和<2(右面板)定义的功能障碍。

模型1包括年龄、性别、教育、血管风险因素、美国国立卫生研究院中风量表(NIHSS)和急性期蒙特利尔认知评估(MoCA)、既往mRS和标准化的中风病灶体积(中风病灶体积/总颅内体积)。

模型2在这些预测因子的基础上包含全球SVD评分。

模型3在这些预测因子的基础上包括个体SVD标记而非全球SVD评分(腔隙计数、深部和脑室周围白质高信号(WMH)Fazekas分级、脑微出血计数和血管周围间隙的分级)。校准曲线基于观察频率与预测风险之间的Loess平滑函数。曲线越接近中线,表示校准越好。集成校准指数(ICI)表示曲线与中线的偏差,因此较低的值表示较好的校准。相反,ROC曲线下面积(AUC)越高,表示区分度越好。括号内为95%置信区间。

AUC,ROC曲线下面积;ICI,集成校准指数;NIHSS,美国国立卫生研究院中风量表;MoCA,蒙特利尔认知评估。*与模型1比较时P < .05

4 讨论

      在这项急性中风患者的多中心队列研究中,我们发现基线MRI上SVD负担的存在和严重度与不良的中风后认知和功能结果相关。具体来说,我们发现全球SVD负担评分和个体SVD标记(腔隙计数、WMH分级、CMB计数、PVS分级)均与中风后最多12个月的认知和功能障碍相关。基线时SVD负担较高的患者在中风后的12个月中执行功能、注意力、语言和视觉空间能力等方面表现较差。尽管全球SVD评分未能在人口统计学、临床和成像因素基础上改善预测效果,但我们发现考虑个体SVD标记及其严重度范围有助于更好的模型校准、区分度和重新分类,用于预测中风后认知和功能障碍的模型。总的来说,我们的结果进一步证明了SVD对中风后结果的负面作用,同时也突出了需要更精确评估全球SVD负担,以改善急性中风患者的预后评估。

     我们的发现扩展了现有文献中关于SVD标记在中风患者预后作用的研究。具体来说,它们支持了个体SVD病变对中风后认知和功能结果的累积作用,这一点被广泛使用的全球SVD评分所捕捉。尽管有显著关联,这一评分在预测12个月后的认知和功能结果方面未能增加价值,这与之前一项研究的结果一致,该研究在中风后6个月考察了结果。然而,进一步的探索表明,考虑个体SVD病变的严重度,而非单纯考虑病变的存在,可以改善预测效果。这表明,简单地为每个SVD病变的存在赋予1分,而不考虑个体病变类型的严重度,导致了相关信息的丧失。这个发现对未来的研究具有重要意义,它突出了开发更高效的SVD负担量化工具的必要性。此类工具应当在临床实践中便于使用,同时具有信息性,例如通过机器学习技术实现准确和自动化的分割,或采用更加详细的视觉评分量表,考虑病变的严重度。这些工具能够为观察性研究中测试针对血管性认知障碍的预测模型以及设计针对SVD进展的临床试验提供支持,从而改善长期不良结果。

    除了临床预测目的,我们的结果进一步支持了SVD是中风后结果的独立风险因素。个体病变独立贡献于不良结果,并且所有病变类型似乎都有剂量反应关系,腔隙计数表现出最强的剂量关系。尽管来自观察性分析的结果不能提供因果关系的证据,但我们认为这些关联与先前研究结果的高度一致性表明,针对基线有SVD病变的中风患者进行SVD进展的干预,可能有利于认知结果的改善。这尚未成为中风后临床护理的一部分,但Systolic Blood Pressure Intervention Trial-Memory and cognition IN Decreased hypertension (SPRINT-MIND)试验表明,在无糖尿病或中风史的高血压成年人中,强化降压治疗可以阻止WMH体积的进展,并降低轻度认知障碍的风险。需要进行包含连续成像的研究,以检验SVD进展与中风后认知结果之间的关系。

     我们的研究具有多项方法学优势。结果来自一项前瞻性多中心研究,专门设计用于识别中风后认知障碍和残疾的预测因素。因此,所有入选患者都接受了3T MRI检查,使用了全体参与地点标准化的先进高质量成像协议,允许对中风和SVD标记进行全面详细的评估,具有高度可靠性。标准化的跨中心协议使我们能够将来自650多名参与者的数据汇总在个体患者水平,从而最大化统计效能。此外,我们通过定期面对面的随访访视进行了详细的神经心理学电池测试,全面评估了多个领域的认知结果。

局限性

     首先,由于成像和神经心理学协议较为复杂,我们的队列主要由轻度中风患者组成(中位NIHSS为2),这些患者更可能同意参与。这与以往的研究相比,SVD病变负担较低且认知和功能结果较好。因此,我们的研究可能无法代表更大范围的中风患者群体,其中更严重的中风可能与由于大面积梗死导致的SVD病变评估困难及与中风相关的运动和非运动缺陷引起的认知结果困难有关。然而,值得注意的是,这代表了一群受影响较轻的患者,他们可能最需要预防干预。同样,研究中的大多数参与者(97%)为缺血性中风,可能是因为出血性中风患者的代表性不足,而后者通常受影响更严重。此外,男性患者的比例较高(67%),而教育水平普遍较高(中位数为13年),这可能限制了研究结果向一般中风患者群体的推广性。

     第二,我们在中风后第一年有15.5%的失访率,这可能会引入失访偏倚。然而,这些患者与最终纳入分析的患者在基线特征上并无显著差异。

    第三,尽管我们尽力扩大样本,但9.5%的患者未能获得基线MRI成像。再次,这些事件主要与技术问题有关,这些患者与纳入分析的患者在基线人口学和临床特征上并无显著差异。

     第四,6个月和12个月随访时的神经心理学测试电池包含相同的测试材料,这可能导致了12个月时因练习效应而有所改善,因此可能低估了中风后12个月的认知障碍发生率。

    第五,现有的SVD负担评分是MRI可见SVD病变的替代性标记,并未捕捉到微血管水平上SVD病理的实际负担。

    第六,我们承认我们需要为大量潜在的混杂因素调整分析,这些因素以前已被报道与SVD负担和中风后结果相关。尽管这在理论上可能导致我们的主要模型不稳定,但SVD标记的关联估计值与仅调整人口学变量(年龄、性别、教育)得出的模型结果一致,这一点令人放心。

    最后,尽管在特定认知领域下对神经心理学测试的分类是该领域的标准做法,但这也是一种固有的局限性,因为一些测试需要不同领域的输入,同时也需要完整的运动输出,而这可能在中风患者中无法实现。

结论

    总之,我们的结果支持急性中风患者的SVD的存在和严重度与中风后12个月认知和功能结果不良相关。我们的结果还表明,开发一个能够捕捉个体病变类型严重度的综合SVD负担评分,对于改善中风患者临床预后评估是必要的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值