精神疾病中的多变量脑-行为关联

绘制脑-行为关联图对于理解和治疗精神疾病至关重要。标准方法包括研究一个脑变量和一个行为变量之间的关联(单变量)或多个变量与一个脑/行为特征的关联('单一'多变量)。近期,大型多模态数据集推动了一波新的研究浪潮,这些研究利用"双重"多变量方法,能够同时解析脑和行为的多方面性质。在这一潮流中,典型相关分析(CCA)和偏最小二乘法(PLS)成为最流行的技术。两者都试图以潜在变量的形式捕捉脑和行为之间的共享信息。我们概述了这些方法,回顾了精神疾病领域的文献,并从预测建模的角度讨论了主要挑战。我们确定了跨四个诊断组的39项研究:注意力缺陷多动障碍(ADHD,k = 4,N = 569)、自闭症谱系障碍(ASD,k = 6,N = 1731)、重性抑郁障碍(MDD,k = 5,N = 938)、精神病谱系障碍(PSD,k = 13,N = 1150)以及一个跨诊断组(TD,k = 11,N = 5731)。大多数研究(67%)使用CCA,并专注于研究脑形态学、静息态功能连接或部分各向异性与症状和/或认知之间的关联。有三个主要发现。首先,大多数诊断共享临床/认知症状与两种脑测量之间的联系,即额叶形态学/脑活动和白质联合纤维(同一半球内皮层区域之间的纤维束)。其次,在多变量模型中通常较少研究的行为变量,如身体健康(例如,BMI,药物使用)和临床历史(例如,童年创伤)被确定为重要特征。最后,由于样本量/特征比率低和/或仅在样本内测试,大多数研究存在偏差风险。我们通过CCA的示例应用强调了谨慎减轻这些偏差来源的重要性。本文发表在translational psychiatry杂志。

简介

     绘制脑和行为之间的关联已成为精神病学研究数十年来的焦点。然而,实现这一目标的分析方法随着时间的推移发生了实质性变化。从历史上看,质量-单变量分析,即将许多单一脑特征与单一行为表型联系起来,在文献中占主导地位。然而,人们对这些发现的可重复性越来越担忧,特别是当这些研究在通常较小的样本中进行时。这种方法也没有考虑到不同脑区之间的相互依赖关系,也与当前认为行为最好由分布式神经网络而非局部区域来解释的观点不一致。因此,多变量方法更适合捕捉脑-行为关系。在这一背景下,两类主要方法变得越来越流行:1) 将多个脑特征映射到一个行为特征(即,"多对一"关联)和2) 从多个脑和多个行为特征中发现潜在的脑-行为关联(即,"多对多"关联或"双重多变量"方法)。前者在过去二十年中受到了相当大的关注,大量研究使用流行的方法如支持向量机(SVM)调查神经特征如何预测一系列单变量精神病学结果,如功能、诊断和对治疗的反应。在第二组中,原则上可以使用许多方法,如独立成分分析(ICA)及其变体(例如,并行ICA、联合ICA或链接ICA)、多层聚类、典型相关分析(CCA)和偏最小二乘法。后两者在脑-行为研究中成为最成熟和最流行的技术,这从最近在普通人群中的几项研究和专为脑-行为调查定制的教程中可以看出。CCA和PLS有许多变体。神经影像学中最常用的两种PLS类型是偏最小二乘相关(PLSC)和偏最小二乘回归(PLSR)。PLSC是一种相关技术,用于估计两组数据之间的关联(例如,行为和脑形态),而PLSR是一种回归技术,用于从另一组数据预测一组数据(例如,从脑活动预测行为)。多集CCA (mCCA)和mCCA+ICA是CCA的变体,主要用于研究不同成像模态之间的关联或纳入行为约束(使用行为数据指导成像模态之间的融合)。在这里,我们专注于标准CCA和PLSC(以下简称PLS)(及其正则化变体),因为它们是调查脑-行为关联最常用的方法。两者都试图以潜在变量的形式捕捉两组多变量数据之间的共享信息。

     神经影像学中的早期应用旨在结合不同的成像模态,这一过程也被称为多模态融合。最近,同样的方法被用于绘制脑和行为关联。这是通过为脑和行为变量赋予权重来实现的,使得它们的线性组合最大化所得潜在变量之间的相关性(CCA)或协方差(PLS)(概述见框1;更深入的解释见Tabachnick等人引文[34])。这种方法的主要优势是可以同时对脑和行为的多变量性质进行建模。事实上,尽管"多对一"方法在精神病学成像中的标准使用承认了脑数据的多方面性质,但它们没有考虑到行为的不同方面也相互影响。因此,CCA和PLS等方法更适合尊重复杂的脑-行为关联,通过允许揭示联合多变量关系。

     虽然CCA/PLS在几十年前就被引入,但它们是"数据饥渴型"的,并且可能在计算上很耗资源。大型公开可用的影像数据集的发布,这些数据集具有全面的行为评估,如青少年脑认知发展研究、人类连接组计划和英国生物银行,推动了人们对使用这些方法研究脑-行为关联的兴趣。例如,特定的脑模式已被联系到围产期和早期生活事件、社会认知和城市化,不同类型的精神病理学,以及身体特征、生活方式和认知。值得注意的是,这些方法在精神病学中可能特别有用。心理健康障碍最好被理解为神经和行为变化的复杂模式。例如,精神病的特征是脑形态、结构和连接性的广泛变化,但也表现为阳性、阴性、情绪和认知症状、洞察力和功能的模式,这些都与诊断和治疗相关。然而,尽管有关于精神疾病中多变量脑-行为相互作用的共识,这些研究仍然很少;多模态数据价格昂贵,需要在几种数据模态(例如,神经影像学、认知、精神病理学)以及整合它们的分析方法方面的专业知识。与此同时,人们也越来越关注研究精神病学中脑-行为关联的普遍性和稳定性。这部分是对精神病学/心理学复制危机的回应,同时追求转化临床工具。在实践中,这意味着典型的描述性分析框架,其目标是在样本内找到高于偶然的关联,正在受到挑战,更多的重点放在预测方法上,目标是测试脑-行为关联是否稳定并可推广到新数据本系统性综述的目的是总结常用的"双重"多变量方法,即CCA和PLS,在精神疾病中研究脑-行为关联的应用,以及讨论主要挑战和未来方向。

框1 典型相关分析和偏最小二乘法概述 

     CCA和PLS是数据驱动的技术,可以提取一组多变量脑数据和一组多变量行为数据之间的潜在关联。前者可以包括,例如,选定脑区的功能连接,而后者可能包括,例如,有关症状、认知、药物、疾病持续时间和精神病史的信息。简单地说,CCA和PLS通过找到每个数据集的权重来量化脑和行为之间的关联,这些权重最大化两者之间的联系。

     形式上,考虑脑和行为数据矩阵X和Y,大小分别为S × nx和S × ny,其中S是有可用测量的受试者数量,nx/ny是手头的脑/行为测量数量。CCA和PLS提取相关的权重向量wx和wy,大小分别为nx × 1和ny × 1。乘积Lx = X·wx和Ly = Y·wy分别是每个受试者的脑和行为测量的加权组合;因此它们的大小为S × 1,被称为潜在变量。CCA和PLS找到的权重使脑和行为潜在变量之间的皮尔逊相关性(对于前者)或协方差(对于后者)最大化,从而揭示低维脑/行为关联。可以提取多个重叠的关联,最多等于较小数据集中可用的测量数量;即min(nx, ny)。在脑或行为一侧提取的所有权重向量共同形成一个正交基,因此每个关联都利用输入数据的不同部分。它们各自的强度(即效应大小)通常用CCA的皮尔逊相关系数和PLS的解释协方差分数报告。强度最小的可能可以忽略,应该被丢弃,通常通过评估每个关联的统计显著性来完成。

     CCA/PLS元素的术语各不相同。在CCA中,每对潜在变量被称为一个典型模式,而权重向量和潜在变量分别被称为典型向量和典型变量/变量。在PLS中,它们分别被称为显著性和得分。人们还可以通过量化原始变量和潜在变量之间的绝对相关性,得到所谓的结构系数(在CCA中)或负荷(一般而言),来检索脑和行为测量对关联的相对贡献。脑-行为关联的解释是通过检查脑和行为变量的权重/负荷大小来完成的。权重根据数据集内相关性进行调整,因此表明每个变量对潜在变量的相对贡献。

图片

精神疾病中的脑-行为关联

      我们的系统综述确定了39项使用CCA/PLS研究精神健康疾病中脑-行为关联的研究(见补充方法中的搜索策略和数据提取),这些研究跨越四个诊断组:注意力缺陷多动障碍(ADHD, N = 569)四项,自闭症谱系障碍(ASD, N = 1731)六项,重性抑郁障碍(MDD; N = 938)五项,以及精神病十三项,包括临床高危个体(CHR-P, N = 278)三项,首发精神病(FEP, N = 455)五项,和确诊精神分裂症(SZ, N = 417)五项。另外十一项研究在包含多种诊断的大样本中进行(跨诊断组; N = 5731),包括SZ、双相障碍、ADHD和ASD。二十六项研究(67%)使用了CCA(或正则化CCA)。纳入研究的主要特征总结在表S2-S6中。图1展示了针对每个诊断组和总样本研究的脑-行为关联,而图2显示了相同组别中统计显著关联的频率。总体而言,研究主要集中在脑形态学、静息态功能连接或部分各向异性与症状和/或认知之间的关联。还研究了广泛的其他行为领域,即人口统计学、临床信息和病史以及身体健康(图1)。

图片

图1:纳入研究中调查的脑-行为关联。 

     连接的大小与给定关联报告模型的数量成正比。标签顺时针列出。ADHD:注意力缺陷多动障碍,ASD自闭症谱系障碍,MDD重性抑郁障碍,PSD精神病谱系障碍,TD跨诊断组,sMRI结构性MRI,GMV/D灰质体积/密度,CT皮层厚度,CSA皮层表面积,LGI局部脑回指数,fMRI功能性MRI,rsFC静息态功能连接,BOLD血氧水平依赖信号,dMRI扩散MRI,FA部分各向异性,MD平均扩散率,AD轴向扩散率;RD径向扩散率;MO各向异性模式,MTR磁化转移比率;L1D L1扩散率。

图片

图2:每种诊断和所有诊断组合的脑-行为关联频率。

连接的厚度与每个诊断组内报告的关联数量成正比。标签顺时针列出。

     行为与所有诊断组的广泛脑区、网络和白质纤维束相关联。在ADHD中,认知和症状主要与默认模式和额顶网络以及白质联合纤维相关,而在ASD中,症状主要与额叶和皮层下区域的形态以及白质联合纤维相关。同样,MDD中的抑郁症状也主要与额叶区域相关,但也与边缘区域和扣带皮层相关。在精神病中,所有类型的行为特征更明显地与额叶区域相关,其次是颞叶和皮层下区域。最后,额叶区域的普遍性在跨诊断组中也很明显,特别是与认知的关联;白质联合纤维也与认知和症状相关。值得注意的是,特定功能连接模式与行为之间没有明确的关联(图2)。在接下来的章节中,将更详细地介绍每个诊断组的脑-行为关联。

注意力缺陷多动障碍

      四项研究调查了ADHD症状/一般认知与皮层脑回、静息态功能连接或部分各向异性之间的关联。前者还包括通常与产前酒精暴露相关的面部畸形测量,以及全量表智商、行为、情绪和认知调节,以及注意力不集中和多动/冲动得分。结果显示一个显著的潜在变量,其中额叶前、岛叶、扣带、颞叶和顶叶皮层的较低脑回与更严重的面部畸形和多动/冲动相关,以及较差的智商和行为调节。Lin等人发现一个显著的典型模式,其中较高的多动/冲动和较低的认知功能与主要在默认模式、额顶、扣带-岛盖(例如,岛叶和丘脑)和皮层下(例如,苍白球和壳核)网络之间的较高连接性相关。Luo等人还发现几个认知领域、ADHD和其他症状(例如,抑郁、焦虑、社交困难)与默认模式和额顶网络之间存在几个典型联系。最后,Tsai等人报告了一个显著的典型模式,其中多个脑系统中较高的白质微结构完整性,主要在联合纤维中(例如,扣带束、下额-枕、钩状和纵向束),与注意力调节障碍、攻击性、焦虑、抑郁和ADHD症状呈负相关,与认知功能呈正相关。

自闭症谱系障碍 

     只有三项研究主要调查了不同ASD症状与脑形态学、功能连接和白质完整性之间的关联,包括社交互动和沟通困难、刻板行为和感觉处理。在325名参与者的大样本中,Mei等人发现一个显著的典型模式,其中社交沟通困难和刻板行为的较强负权重与外侧枕叶和上顶叶、右侧中央前回、杏仁核、海马和海马旁回的灰质体积的较高权重相关,并与丘脑和壳核的灰质体积呈正相关。在一个单独的CCA中,同一研究还发现较高频率的感觉症状与小脑、外侧枕叶和顶叶、中央前回和下额回及中额叶的体积减少相关。使用相同样本,Mei等人通过将灰质体积和白质微结构作为输入特征与核心ASD症状相结合,扩展了这些发现。唯一显著的典型模式主要由下纵束和上纵束、下额-枕束、皮质脊髓束和丘脑辐射中的白质特征主导,这与重复和刻板行为相关。类似的纤维束,包括下纵束和钩状束、胼胝体、皮质脊髓束和额叶斜束、丘脑辐射和扣带束,在Ni等人的研究中也与情感、行为和认知调节障碍相关。另一项研究尝试解析脑-行为异质性,发现四个亚型,其中社交困难主要与额-顶区域、脑干、颞-枕或额-皮层下区域相关。至于功能连接,重复和刻板行为以及社交困难主要与视觉网络相关

重度抑郁障碍 

     总体而言,四项研究涵盖了广泛的行为特征,即抑郁和焦虑症状、人格特征和童年创伤,与脑形态学或静息态功能连接的关联。Drysdale等人发现两种临床特征 - 快感缺乏和精神运动迟缓以及焦虑和失眠 - 与不同的功能连接网络相关。前一种特征主要与皮层下结构以及默认模式和显著性网络相关,而后者几乎完全与皮层下区域相关,特别是边缘结构。一项具有更全面行为特征集(焦虑、抑郁、人格特征、童年创伤)的类似研究发现,类似网络中的功能连接,特别是皮层下结构、背侧注意、感觉运动、腹侧注意网络和童年创伤之间存在显著关联。在研究相同行为特征与脑形态学的关联时,焦虑痛苦与多个皮层和皮层下结构的灰质体积呈负相关,包括中扣带回和额回、额极、双侧杏仁核、右侧海马和上额回。相反,积极的人格特征与中央岛盖、后扣带回和中扣带回、海马和杏仁核的灰质体积呈正相关,而童年创伤与内嗅皮层和左侧海马旁回的灰质体积呈负相关。最后,躯体化与广泛脑区的功能连接相关,包括枕叶、颞叶和额叶以及小脑。

精神病

     十三项研究调查了脑形态学、静息态连接或FA与广泛的认知和临床测量之间的关联,这些测量包括症状、功能、未治疗疾病持续时间和抗精神病药物等。三项研究没有发现统计显著的脑-行为关联。在其余研究中,额叶脑区在所有调查的行为领域中更为显著地参与,其次是颞叶和皮层下区域。症状与广泛的连接网络相关,但主要与默认模式和感觉运动网络相关。至于FA,联合纤维与认知、症状和临床信息之间的联系也被观察到。在CHR-P中,前驱症状和功能不良与联合纤维(矢状束、钩状束和扣带束)和前放射冠中的白质微结构相关。相反,认知能力包括处理速度、工作记忆和执行功能主要与联合纤维(穹窿和钩状束)和脑干束(上小脑脚和内侧丘系)相关。在FEP中,多种行为特征(如认知、症状严重程度、药物、教育)与皮层厚度和海马白质之间的关联揭示了两个性别特异的潜在变量。在男性中,较大的言语记忆障碍、较少的教育年限、较多的抗精神病药物和阳性/阴性症状与边缘结构体积减少、主要在顶叶和颞叶区域的厚度减少,以及在几个额叶区域和楔前叶的厚度增加相关。在女性中,较少的抑郁/阴性症状和较早的发病年龄与边缘结构体积减少、颞叶和额叶区域以及扣带皮层的厚度降低,以及顶叶和枕叶区域的厚度增加相关。在确诊的SZ中,认知和阴性症状与广泛网络中的灰质体积相关,主要是前额叶、颞叶、顶叶和(旁)边缘区域。在精神病症状与更多时间处于以默认模式和执行网络不活跃为特征的状态,以及感觉运动网络活动增强之间也发现了显著关联。

跨诊断组

     几项研究选择合并诊断组以识别跨诊断生物标志物。一半的研究集中在精神病谱系障碍,即精神分裂症、分裂情感障碍和双相障碍(有和无精神病特征)。其余研究主要调查ADHD、ASD以及情绪、焦虑和边缘型人格障碍的组合。大多数研究调查了认知,这主要与额叶区域的形态学相关。例如,上、下、尾状和中部额叶皮层在几个脑形态学特征中具有最高负荷,即在精神病谱系组、ADHD、情绪和焦虑障碍中的灰质体积、皮层厚度、皮层表面积和局部脑回指数。至于白质微结构,认知主要与上纵束、矢状束和穹窿中的部分各向异性相关。有趣的是,在唯一两项包含广泛行为特征中的身体测量的研究中,诸如BMI、药物使用和身体活动等变量在脑模态中具有最高负荷,即形态学、白质微结构和功能活动,以及跨脑区域。总体而言,精神病理学(如精神病、焦虑)与广泛的脑模态和区域相关,这是由于不同的诊断组而预期的。然而,只有五项研究调查了脑和症状之间的关联,所有这些研究都有不同的诊断和/或脑特征,这使得难以确定哪些关联在不同的诊断组/症状中更为普遍。值得注意的是,四项功能连接研究中有三项没有发现任何统计显著的脑-行为关联;然而,由于其严格的样本外测试,它们也是最稳健的研究之一。

偏倚风险

     据我们所知,目前没有已建立的工具来系统评估"双重"多变量脑-行为研究中的偏倚风险。根据在使用这些方法的脑-行为研究中一致突出的三个领域,对每项研究进行了主观判断:1)数据维度,2)验证策略,3)特征权重的稳定性。前者被操作化为样本大小(N)与输入CCA/PLS模型的脑和行为特征总数(即有效变量数,f)之间的比率;N/f比率低于10被认为是高风险偏倚。在验证策略方面,仅样本内测试和样本外测试(通过重采样或独立数据集)分别被认为是高和低偏倚风险。最后,未调查特征负荷稳定性的研究在最后一个领域被评为高偏倚。如果评级领域所需的任何信息不清楚或缺失,该研究被评为"不清楚"。大多数研究(80%)在数据维度方面存在高偏倚风险,68%的研究由于样本内验证策略也存在高风险(图3,补充信息)。、

图片

图3:纳入研究中的偏倚来源。报告的CCA/PLS模型中,三个领域的低(蓝色)、高(绿色)或不清楚(灰色)偏倚的比例:数据维度、验证策略和特征负荷的稳定性。

脑-行为关联的普遍性和稳定性

     大多数纳入的研究使用描述性方法来调查脑-行为关联,即CCA/PLS模型在同一样本中训练和测试。无法知道当在新数据中测试时,相同的效应大小是否会保持(普遍性)和/或权重是否会保持相似(稳定性)。由于大多数研究相对于脑-行为特征总数的样本量较小,这一点进一步加剧。虽然许多研究使用特征选择/维度降低来解决这个问题,但这可能不足以减轻过拟合的风险,因为它们中的大多数仍然没有达到每特征10个参与者的最低建议指南。已经提出了更严格的阈值,包括42 [86]和50 [85],表明偏倚风险可能更大。此外,很少有研究使用独立样本来测试他们的发现。这比重采样更具挑战性的泛化,进一步突显了过拟合的可能性。小样本量与预测建模中的乐观表现之间的关联是公认的;在这里(图4A)和类似的健康对照研究中也可以观察到这一点。这两个限制,特别是当结合起来时,是有问题的,因为CCA和PLS已经容易过拟合;即,与在应用相同训练模型的新样本和未见样本中的关联相比,脑-行为关联往往在训练/拟合模型的样本中更强(即样本内测试)。为了说明这如何导致有偏的潜在脑-行为关联,我们在人类连接组计划(HCP)数据集(N = 842,N/f = 52.6)中展示了皮层厚度(68个原始特征;维度降低后为5个)和认知(11个特征)之间的标准CCA示例,并比较了i)样本内和样本外的第一典型相关性和ii)随着N/f比率增加(即更有利)的模型权重(图4B;见补充方法)。前者研究在HCP子样本上训练的CCA模型的第一个(即最强)典型相关性如何推广到同一数据集的另一个子样本;后者评估模型权重的稳定性;即特征重要性在多个模型中的变化程度。理想情况下,样本内和样本外效应大小应该相似,权重在模型间稳定。然而,如预期的那样,对于小N/f比率,样本内和样本外效应大小的均值之间存在明显差异,后者变化很大,这是泛化能力差的强烈指标。随着N/f比率的增加,效应大小开始收敛,表明模型更具泛化性。在总样本中,样本内和样本外的平均典型相关性几乎在0.28(sd=0.02)和0.21(sd=0.06)处收敛(图4C)。这与脑-行为关联的更现实效应大小一致。权重的稳定性(给定N/f比率的所有100次迭代的特征权重之间的平均余弦相似度;见补充方法)遵循类似模式(图4D)。在小比率中训练的模型的权重在模型之间变化很大(即低余弦相似度),表明特征重要性的稳定性差。对于总样本,余弦相似度为0.79,表明权重稳定性良好。然而,图表表明,这可以通过更大的样本进一步改善,这与更近期的建议一致,即稳定的CCA需要最小N/f比率为50 [85]。综合起来,这些结果对大多数已发表研究的有效性和可靠性提出了重要问题,并强调了需要谨慎测试以避免夸大/不稳定的结果。虽然一些研究使用了特征选择、维度降低和/或正则化CCA/PLS,但这可能不足以减轻过拟合的风险。未来的研究应该遵循样本外测试的指导原则,调查和报告权重稳定性,并减轻高维度的影响。

图片

图4:N/f比率对模型性能和稳定性的影响

     A 样本大小(N)/有效特征(f)比率与纳入研究中第一对潜在变量的效应大小(CCA的典型相关性和PLS的解释方差)之间的关联。

     B 样本大小对HCP数据集中68个脑区(通过主成分分析降维为5个组分)的皮层厚度与11个认知测试之间的CCA的样本内和样本外效应大小的影响。CCA在相同大小的100个随机子样本中迭代训练和测试,样本量逐渐增加(x轴)。第一典型相关性用于测量效应大小(y轴)。绿色(样本内)和蓝色(样本外)线显示每个样本大小的平均第一典型相关性和相应的标准偏差。

     C 总样本(N = 842)的样本内和样本外的第一典型相关性。

     D 样本大小对权重稳定性的影响。在每个样本大小下,计算100次迭代权重之间的平均余弦相似度。

精神病学中脑-行为关联的解释

     多变量模型的可解释性对于理解精神疾病的潜在机制至关重要。一个强大和稳健的关联,如果不提供有关其潜在脑和行为特征的信息,将具有有限的临床效用。CCA/PLS模型的解释通常通过检查模型的权重或负荷来完成;绝对权重/负荷越大,变量对整体关联的贡献越大(框1)。重要的是,脑-行为关联的可靠解释需要有效的模型权重。如图4D所示,在小样本中这可能难以保证。几项研究通过自助法调查了权重的稳定性,并量化了每个单独变量在迭代中权重的变异性。这是一个有用的策略,因为它允许为每个变量权重估计置信区间;然而,对于"双重"多变量方法,更适当的方法是使用例如余弦相似度报告整个变量集权重在迭代中的变异性。这为整个模型解决方案的稳定性提供了更好的估计,而不仅仅是单个变量。值得注意的是,研究在如何识别贡献最大的特征方面各不相同(例如,前25%或5个特征,统计显著特征,权重高于特定阈值的特征)。这是文献的一个重要限制(以及通过扩展,本综述的限制),因为它阻碍了研究之间的比较。此外,"脑-行为"一词不应与神经特征预测行为的任何方向性混淆。CCA和PLS相关本质上是对称的;即,协方差和相关性中没有方向性。尽管有时可能使用独立/预测变量和依赖/标准变量来描述脑和行为数据集,但数据集的顺序最终是任意的。因此,使用这些方法的关联解释应限于推断脑和行为特征之间的共享信息。

     最后,行为数据的关键特性以及它们如何影响关联的强度和可解释性在脑-行为研究中的讨论比影像学少。值得注意的是,CCA/PLS对数据集之间和内部的关联都很敏感。在实践中,这意味着行为数据的小变化(由于变量的选择和/或质量)可能会显著改变潜在变量的组成,最终改变脑-行为关联的强度和解释。一些纳入的研究关注症状或认知,而其他研究使用了不同组合的任一/两者加上人口统计学、临床信息和历史,和/或身体健康。然而,行为变量的选择很重要;例如,与其他行为变量(如父母报告的行为测量)相比,认知已被证明与神经特征有更可靠的关联。同样,范围更广且相互关联较少的行为变量可能导致更稀释的脑-行为关联。此外,测试精神病学神经影像学中较少研究的心理测量特性,如测量行为表型的高/低水平和独特/共享方差的能力(表型分辨率和复杂性)以及在不同组之间测量相同构念的能力(测量不变性),可能有助于增加当前可靠脑-行为关联的效应大小和可解释性。展望未来,研究应该报告其样本中行为测量的关键心理测量特性(例如,通过项目反应理论),以增加行为数据质量的透明度。很少有研究直接调查不同影像模态对脑-行为关联的影响。这一有限的证据表明,CCA/PLS在灰质体积和结构/功能连接之间的行为是相似的。然而,合理地预期那些导致参与者之间更具凝聚力(即相互关联)数据的模态/预处理管道将贡献更强的脑-行为关联,就像在行为数据中一样。

基于脑-行为关联预测临床结果

     大多数研究使用CCA或PLS作为主要方法,即研究的目的是调查脑-行为关联。虽然这本身就是一个有趣的目标,但这些方法也可以用于提取低维脑-行为模式,输入到机器学习模型中,预测临床结果,如复发或对治疗的反应;这一初始步骤被称为早期融合。随着大型脑-行为数据集变得越来越容易获取,使用CCA/PLS作为早期融合方法可能会变得更加流行。例如,认知表现或症状的功能连接特征已被用作聚类分析的输入,以在精神病[92]、ASD [64]和抑郁症[68]中找到亚组。值得注意的是,在一项罕见的复制发现的努力中,后一项研究的结果未被复制[84]。在原始研究中,如果一组脑-行为特征在整个样本中相关,则选择它们作为CCA的输入。复制研究通过将特征选择步骤和CCA包含在相同的交叉验证方案中来解决这(和其他类似的限制),以确保两个步骤都被测试了普遍性。未能做到这一点是机器学习研究中偏倚的常见来源,导致乐观的发现。与我们的CCA示例应用一致,这两项研究强调了在脑-行为研究中实施严格样本外测试的需要和复杂性。早期融合也可以与更流行的监督技术结合使用,用于分类(例如,SVM)或回归(例如,支持向量回归),以预测感兴趣的临床结果,如转化为疾病和症状的严重程度。

     另一种可能的应用是在参考队列(例如,健康对照)中建模脑-行为关联,将患者映射到这个参考模型,并量化与预期脑-行为相互作用的偏差。考虑到精神疾病中神经和行为表现的已知异质性,它们的相互作用也可能是异质的。这种方法的优势在于允许患者以自己独特的方式偏离预期的脑-行为相互作用,因此可能是一种有前途的方法,用于模拟精神病学中复杂和异质的脑-行为关联。将脑-行为预测因子扩展到其他相关领域,如脑-行为-组学关联,也将是有趣的。这可以通过多集CCA(mCCA)实现,这是CCA的扩展,能够建模三个或更多多变量数据集之间的潜在关联。多层聚类[99]是另一种有前途的方法,患者同时基于多个领域,如脑和行为进行分组。例如,Dwyer等人发现一组功能低下和脑体积减少的早期精神病患者。未来的研究可以调查不同脑-行为亚型的成员资格与预后的关联。最后,多层次网络,通过建模脑和行为网络之间的联系来探索脑和行为关联,也是一种有前景的前进方式。例如,Hilland等人开发了一个与抑郁相关的脑结构和个体抑郁症状的联合网络。

何时使用什么

     一个自然的问题是应该使用哪种方法:CCA还是PLS?从理论上讲,差异在于被优化的量(PLS的协方差与CCA的相关性)。在CCA中,跨模态关系已通过块内方差进行了标准化;换句话说,输入变量之间的依赖关系,无论是在脑还是行为方面,都已被消除。因此,优化倾向于强调第一组变量对第二组内变量预测的独特贡献。相比之下,不同输入变量之间的集体贡献(即冗余关系)在PLS中得到强调。在本综述中,大多数研究(67%)使用了CCA;这可能是因为CCA是一种更古老的方法,源自公认和流行的广义线性模型,而PLS则较新。调查两者差异的实验发现,当每个数据集内的相关性较低时,CCA和PLS结果最相似;然而,当任一数据集内的相关性高时,CCA的可靠性会恶化。值得注意的是,PLS在较小样本中具有更稳定的权重,然而它们更有偏差,与CCA相比,需要更大的样本才能获得无偏结果。除了这些发现外,关于数据的其他特性是否影响方法选择的知识有限。此外,鉴于两种方法的稳定性和可靠性随输入数据类型(例如,父母报告的儿童行为与认知数据)而变化,为了做出明智决定,应该对每个问题彻底调查每种方法。这应包括数据集内和数据集之间相关性的强度,测试不同数量的输入特征(即维度降低/特征选择是否提高可靠性和稳定性),样本内和样本外关联(即量化过拟合程度)以及模型权重/负荷的稳定性(即使用重采样技术)。

局限性

     本综述重点关注两种流行方法 - CCA和PLS - 来调查脑-行为关联。其他方法也可以使用,如多层聚类或独立成分分析。然而,这些方法在精神疾病脑-行为研究中的应用仍然稀少。在我们的CCA示例中,我们讨论了使用一个大样本进行"样本外"测试的重要性。虽然这比样本内测试有显著改进,但用于寻找脑-行为关联并测试其普遍性的子样本遵循相同的招募和评估程序,这可能掩盖了关联的真实强度。理想情况下,在独立样本中测试CCA模型会产生更接近真实关联的结果。最后,本系统性综述未进行预注册;然而,搜索策略在补充信息中显示。

结论

     "双重多变量"方法,即CCA和PLS,正成为调查精神病学中脑-行为关联的流行方法。这些方法之所以吸引人,是因为它们尊重健康和疾病中脑和行为的多变量性质。我们发现了37项使用CCA或PLS来调查跨多个诊断组的脑-行为关联的研究。总体而言,我们的发现表明,额叶区域可能是精神疾病中精神病理学和认知的跨诊断标志物。虽然只有少数研究调查了身体测量如BMI和发育历史如童年创伤,但证据表明这些因素可能与特定脑特征相关。这强调了扩展脑-行为研究调查,以包括精神疾病的跨诊断因素以及症状和认知的重要性。此外,行为测量的选择和质量应该与神经影像学数据一样受到审查;例如,可以通过报告行为数据的关键心理测量特性,如有效性、可靠性和测量不变性来实现这一点。最后,我们推测到目前为止报告的"双重多变量"脑-行为关联的整体效应大小可能过于乐观。这主要是由于缺乏严格的样本外测试和样本大小与特征数量之间的次优比率,这些因素结合起来可能导致过拟合。总之,"双重多变量"模型学习复杂关联的能力,使其成为调查脑和行为如何在精神疾病中相互作用的有前途的方法。虽然仍有重要挑战需要克服,但这里回顾的发现为这些方法在心理健康疾病研究中的潜在作用提供了初步证据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值