泰勒公式系列之二—完整公式推导

泰勒公式系列


1 目标

泰勒公式分为两部分:

 上个视频中,我们介绍了泰勒公式中的多项式部分如何利用奇偶函数的性质,逼近曲线f(x) 的:

f(x)=\sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n !}\color{blue}{(x-x_0)^{n}}+R_{n}(x)

但系数是多少,余项又是什么都没有交代:

 本期视频就来回答这两个问题。

2 总体思路

让我们将泰勒公式展开:

f(x)=f(x_0)+f^{\prime}(x_0)(x-x_0)+\frac{f^{\prime \prime}(x_0)}{2 !} (x-x_0)^{2}+\cdots+\frac{f^{(N)}(x_0)}{N !} (x-x_0)^{N}+R_{n}(x)

泰勒公式的多项式系数是本文要求的,所以将它们用a_0,a_1,\cdots,a_N 来代替:

f(x)=a_0+a_1(x-x_0)+a_2 (x-x_0)^{2}+\cdots+a_N (x-x_0)^{N}+R_{n}(x)

这样,我们要求的就是,a_0,a_1,a_2,\cdots,a_N 以及R_{n}(x) :

f(x)=\color{red}{a_0}+\color{red}{a_1}(x-x_0)+\color{red}{a_2} (x-x_0)^{2}+\cdots+\color{red}{a_N} (x-x_0)^{N}+\color{red}{R_{n}(x)}

很显然现在是求不出来的,我们必须根据多项式不断逼近光滑函数的思想对余项R_{n}(x) 做出假设:

f(x)=\color{red}{a_0}+\color{red}{a_1}(x-x_0)+\color{red}{a_2} (x-x_0)^{2}+\cdots+\color{red}{a_N} (x-x_0)^{N}+\color{green}{R_{n}(x)}

再根据假设来推导出各个系数的值:

f(x)=\color{green}{a_0}+\color{green}{a_1}(x-x_0)+\color{green}{a_2} (x-x_0)^{2}+\cdots+\color{green}{a_N} (x-x_0)^{N}+\color{green}{R_{n}(x)}

下面来讲述细节。

3 对余项的观察

为了叙述方便,我们用d_N 来表示余项:

f(x)=a_0+a_1(x-x_0)+a_2 (x-x_0)^{2}+\cdots+a_N (x-x_0)^{N}+d_N

下面来观察随着泰勒公式的展开,余项会发生什么变化。

3.1 零次展开

泰勒公式的零次展开为

f(x)=a_0+d_0

其中,多项式部分(a_0 )为过展开点的一条横着的直线:

零次展开的多项式与光滑函数的差值为余项d_0 :

3.2 一次展开

泰勒公式的一次展开为

f(x)=a_0+a_1(x-x_0)+d_1

此时,多项式函数(a_0+a_1(x-x_0) )为一条斜着的直线:

相应的,一次展开的多项式与光滑函数的差值为余项d_1 :

可以看到差值在缩小,也就是

d_1<d_0

3.3 二次展开

同样的道理,泰勒公式二次展开时,多项式为二次函数:

 该多项式函数为过展开点的二次曲线:

此时,二次展开的多项式函数与光滑函数的差值为余项d_2 :

差值继续缩小,也就是

d_2<d_1

3.4 N 次展开

泰勒公式N 次展开时,多项式为N 次函数:

 对应的图像为过展开点的N 次曲线:

此时,多项式函数与光滑曲线的差值为余项d_N :

3.5 余项的趋势

d_0,d_1,\cdots,d_N 表示从零次展开到N 次展开的余项。

\begin{align}f(x)&=a_0+d_0\\ &=a_0+a_1(x-x_0)+d_1\\ &=a_0+a_1(x-x_0)+a_2(x-x_0)^2+d_2\\ &\cdots\\ &=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_N(x-x_0)^N+d_N\end{align}

可以看到,随着多项式的展开,余项在不断减小。

d_0>d_1>d_2>\cdots>d_N

找到余项这个规律,下面我们尝试用数学符号把余项表示出来。

4 余项

x_0 附近范围的半径用\Delta x 表示:

4.1 零次展开

零次展开时的余项是d_0 :

此时可以看到,在\Delta x 不断缩小时,d_0 都在不断靠近零:

由此可以假设d_0 是关于\Delta x 的无穷小,用\alpha(\Delta x) 表示:

则此时泰勒公式展开为:

f(x)=a_0+\alpha(\Delta x)

4.2 一次展开

一次展开后,多项式为一条斜着的直线,余项也随之缩小:

要达到上图的目的,需要在零次展开的基础上增加多项式以及减小余项。具体来说就是将d_0=\alpha(\Delta x) 展开为a_1(x-x_0)+d_1 ,其中d_1=o(\Delta x) :

\alpha(x)=a_1(x-x_0)+o(\Delta x)

上面的等式右侧验证一下就知道的确是\Delta x 的同阶无穷小:

\lim_{\Delta x\to 0}\frac{a_1(x-x_0)+o(\Delta x)}{\Delta x}=a_1

所以一次展开后的泰勒公式为:

\begin{align}f(x)&=a_0+\color{red}{\alpha(\Delta x)}\\ &=a_0+\color{red}{a_1(x-x_0)+o(\Delta x)}\end{align}

上面的展开结果可以用图表示为:

4.3 二次展开

二次展开后,多项式为二次曲线,余项也随之缩小:

要达到上图的目的,需要在一次展开的基础上增加多项式以及减小余项。具体来说就是将d_1=o(\Delta x) 展开为a_2(x-x_0)^2+d_2 ,其中d_2=o(\Delta x^2) :

o(\Delta x)=a_2(x-x_0)^2+o(\Delta x^2)

上面的等式右侧验证一下就知道的确是\Delta x 的高阶无穷小:

\lim_{\Delta x}\frac{a_2(x-x_0)^2+o(\Delta x^2)}{\Delta x}=0

所以二次展开后的泰勒公式为:

\begin{align}f(x)&=a_0+\alpha(\Delta x)\\ &=a_0+a_1(x-x_0)+\color{red}{o(\Delta x)}\\ &=a_0+a_1(x-x_0)+\color{red}{a_2(x-x_0)^2+o((\Delta x)^2)}\end{align}

上面的展开结果可以用图表示为:

4.4 N 次展开

不断重复上面的思路,不断拆分余项,拆分N 次后可以假设余项为o((\Delta x)^n) ,这样泰勒展开式为

\begin{align}f(x)&=a_0+\alpha(\Delta x)\\ &=a_0+a_1(x-x_0)+o(\Delta x)\\ &=a_0+a_1(x-x_0)+a_2(x-x_0)^2+o((\Delta x)^2)\\ &\cdots\\ &=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_N(x-x_0)^N+o((\Delta x)^n)\end{align}

4.5 小结

前面我们根据多项式不断靠近光滑函数,假设出了各个余项

\begin{align}f(x)&=a_0+\color{blue}{\alpha(\Delta x)}\\ &=a_0+a_1(x-x_0)+\color{blue}{o(\Delta x)}\\ &=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\color{blue}{o((\Delta x)^2)}\\ &\cdots\\ &=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_N(x-x_0)^N+\color{blue}{o((\Delta x)^n)}\end{align}

下面我们就要根据这个假设来推导多项式的系数了

\begin{align}f(x)&=\color{red}{a_0}+\alpha(\Delta x)\\ &=\color{red}{a_0}+\color{red}{a_1}(x-x_0)+o(\Delta x)\\ &=\color{red}{a_0}+\color{red}{a_1}(x-x_0)+\color{red}{a_2}(x-x_0)^2+o((\Delta x)^2)\\ &\cdots\\ &=\color{red}{a_0}+\color{red}{a_1}(x-x_0)+\color{red}{a_2}(x-x_0)^2+\cdots+\color{red}{a_N}(x-x_0)^N+o((\Delta x)^n)\end{align}

5 系数

求解系数之前,我们首先用x-x_0 把\Delta x 进行替换

\begin{align}f(x)&=a_0+\alpha(x-x_0)&(1)\\ &=a_0+a_1(x-x_0)+o(x-x_0)&(2)\\ &=a_0+a_1(x-x_0)+a_2(x-x_0)^2+o((x-x_0)^2)&(3)\\ &\cdots\\ &=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_N(x-x_0)^N+o((x-x_0)^N)&(N)\end{align}

式一

5.1 计算a_0

下面根据式一的第(1)行计算a_0

\begin{align}&f(x)=a_0+\alpha(x-x_0)\\\\ &\Longrightarrow a_0=f(x)-\alpha(x-x_0)\\\\ &\Longrightarrow \lim_{x\to x_0}a_0=\lim_{x\to x_0}\left[f(x)-\alpha(x-x_0)\right]\\\\ &\Longrightarrow a_0=f(x_0)\end{align}

5.2 求解a_1

a_0=f(x_0) 带入式一种的第(2)行,可以得到:

\begin{align}&f(x)=f(x_0)+a_1(x-x_0)+o(x-x_0)\\\\ &\Longrightarrow a_1=\frac{f(x)-f(x_0)-o(x-x_0)}{x-x_0}\\\\ &\Longrightarrow \lim_{x\to x_0}a_1=\lim_{x\to x_0}\frac{f(x)-f(x_0)-o(x-x_0)}{x-x_0}\\\\ &\Longrightarrow a_1 = \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}-\lim_{x\to x_0}\frac{o(x-x_0)}{x-x_0}\\\\ &\Longrightarrow a_1 = f'(x_0)\end{align}

5.3 求解a_2

a_0=f(x_0),a_1=f'(x_0) 带入式一的第(3)行可得(运算中用到洛必达):

\begin{align}f(x)&=f(x_0)+f'(x_0)(x-x_0)+a_2(x-x_0)^2+o((x-x_0)^2)\\\\ &\Longrightarrow a_2=\frac{f(x)-f(x_0)-f'(x_0)(x-x_0)-o(x-x_0)^2}{(x-x_0)^2}\\\\ &\Longrightarrow \lim_{x\to x_0}a_2=\lim_{x\to x_0}\frac{f(x)-f(x_0)-f'(x_0)(x-x_0)-o(x-x_0)^2}{(x-x_0)^2}\\\\ &\Longrightarrow a_2=\lim_{x\to x_0}\frac{f(x)-f(x_0)-f'(x_0)(x-x_0)}{(x-x_0)^2}- \lim_{x\to x_0}\frac{o(x-x_0)^2}{(x-x_0)^2}\\\\ &\Longrightarrow a_2=\lim_{x\to x_0}\frac{f'(x)-f'(x_0)}{2(x-x_0)}\\\\ &\Longrightarrow a_2=\frac{1}{2!}f''(x_0)\end{align}

5.4 推广

照此推广下去,可得:

a_{0}=f\left(x_{0}\right), a_{1}=f^{\prime}\left(x_{0}\right), a_{2}=\frac{1}{2 !} f^{\prime \prime}\left(x_{0}\right), \cdots, a_{N}=\frac{1}{N !} f^{(N)}\left(x_{0}\right)

N 次展开的展开式为:

f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(N)}\left(x_{0}\right)}{N !}\left(x-x_{0}\right)^{N}+o\left((x-x_0)^N\right)

整理后,就得到了泰勒公式的完整表达

f(x)=\sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n !}(x-x_0)^{n}+o\left((x-x_0)^N\right)


百个故事,千幅图片,万名同学,欢迎加入:

首页-马同学图解数学-淘宝网淘宝, 店铺, 旺铺, 马同学图解数学https://matongxue.taobao.com/

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值