什么是泰勒公式?
数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。
如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
历史背景
泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了带有余项的现在形式的泰勒定理。
没懂往下看↓
泰勒公式其实就是下面这一长串等式!
那么问题来了
等式两边真的相等吗?
需要验证一下
(搞不懂的,多看几遍)
为什么要用导数呢?
想想两函数相同不光要函数初始值相同,标化率也要相同,变化率的变化率...都要相同。
有点难懂!
假如有两辆车:一辆兰博基尼,一辆QQ,这两辆车同时停在起跑线上,跑道是无限长的笔直公路,准备比赛,提出一个问题,十秒后,他俩跑的距离是一样的吗?
我们目前已知的条件只有,两车的初速度都是0,但是显然我们都知道兰博基尼发动机可真强劲,不是qq能比的,发动机越强劲,那么加速度就越大,显然我们就可以知道,这种情况下,十秒后,兰博基尼早把qq甩得没影了。
于是qq车主发奋图强,改装发动机,让qq的加速度和兰博基尼一模一样,那么由于他们加速度一模一样,那么很显然十秒后,两车所跑得距离也是一样,这很简单对吧。但是实际情况往往比较复杂,复杂在哪里呢?
那就是,加速度他不是个常量,是个随时间变化的函数,也就是说,加速度也有个导数,那个导数就是加速度的变化,复杂的是,加速度的加速度也不是个常数,他也在随时间变化,于是加速度的加速度也有个导数,叫加速度的加速度的加速度·······所以QQ想要真的在很长一段时间之后和兰博基尼跑的一样快,就需要很多很多次求导之后的值还一样。
不过有一点很关键,这也是泰勒想到一个关键的点,那就是,只要两个事物的初始的速度相同,初速度随时间变化的情况相同,初速度随时间变化的变化相同,初速度随时间变化的变化的变化相同······如果推到极限,那么这两者的运动轨迹就会无限相同。
泰勒公式怎么来的呢?
根据拉格朗日中值定理导出的有限增量定理有:
(导数公式的变形)
所以在近似计算中往往不够精确,于是就需要一个能够足够精确的且能估计出误差的多项式:
截止目前为止我们得到了一个能够足够精确的且能估计出误差的多项式,以及这个多项式的系数的推导过程,这能帮助我们更好的理解泰勒公式。
有没看懂!
学好数学最重要的就是要数形结合
文字没看懂没关系,咋们用图象说话
先来看一看泰勒公式近似效果(随着展开项的增多)
变成了有规律的“心电图”
我.......
多看几遍就懂了
最后,知识点+例题放上
泰勒公式是高等数学考的内容,高考是不会考的,同学们在这里只用做一个课外的兴趣了解,有兴趣的同学可以多查阅有关的资料,做更深的学习,毕竟多学点东西总是没错的!
—声明—
编辑:π叔 | 文章来源:网络 如有侵权请联系删除
头图来源:网络 如有侵权请联系删除
