微分中值定理—罗尔中值定理

我们所说的微分中值定理,一般指三大微分中值定理。它包含

  • 以米歇尔·罗尔的名字命名的--罗尔中值定理

  • 以约瑟夫·路易·拉格朗日的名字命名的--拉格朗日中值定理

  • 以及以奥古斯丁-路易·柯西的名字命名的--柯西中值定理

其中罗尔中值定理是基础,拉格朗日中值定理是罗尔中值定理的推广,柯西中值定理,是拉格朗日中值定理的推广。那么它们到底在讲什么呢?这节课,我们就来学习它们中的第一个,罗尔中值定理。

1 定义

定理(罗尔中值定理). 如果函数y=f(x) 满足:

那么\exists\xi\in(a,b) ,使得f'(\xi)=0 。

f(x) 是这样一个函数,在a,b 内闭区间连续,开区间可导。则,在a,b 区间内,至少存在一个导数为零的点。而我们知道,导数就是切线的斜率。斜率为零,意味着是水平的。那么存在一个导数为零的点,从几何上看,就是存在一个点,这个点的切线是水平的。

2 往返跑

对于折返跑,相信大家并不陌生,它的最大特点是,起点和终点在同一个位置。

下面,我们以时间为横坐标,位移为纵坐标建立坐标系。假设开始的时刻为a ,此时的位移为f(a) 。

当跑到最远位置的时候,位移最大,也就是函数值来到了最高点。

接着开始折返往回跑,函数值也就开始回落,当最后回到起点位置时,又来到了位移为s_0 的位置。

可以看到,此时这个时间位移函数,在a,b 内,闭区间连续,开区间可导,且在起点时刻(a ),与终点时刻(b ),的函数值(s_0 )是相同的,也就是说,这个时间位移函数,是符合罗尔中值定理的条件的。

那么按照定理的描述,就应该有个点导数为零,哪个点呢---最高这个点。

因为纵坐标为位移,那么最高这个点,其实就是距离起点最远的这个位置,此时折返跑要完成转向,因此必然出现一个速度为零的时刻。

而我们知道,瞬时速度就是位移相对于时间的导数,假设我们在\xi 这个时间点,速度为零,那么过\xi 点的切线就是水平的

3 细节

3.1 至少一个点导数为零

罗尔中值定理中说的是,导数为零的点至少有一个,隐含意思是,导数为零的点可能有多个。

3.2 开区间可导

不少同学会疑惑,能不能将罗尔中值定理的条件进行如下修改?

\text{“在闭区间}\ [a,b]\ \text{上连续},\text{在开区间}\ (a,b)\ \text{上可导”}\implies\text{“在闭区间}\ [a,b]\ \text{上可导”}

答案是不可以,因为这样的修改并不等价,比如:

f(x)=  \begin{cases}      x(1-x)\sin\frac{1}{x(1-x)},&x\ne 0,1\\     0, &x=0,1  \end{cases}

上述函数y=f(x) 就刚好满足“在闭区间[0,1] 上连续,在开区间(0,1) 上可导”,其在端点x=0 和x=1 处不可导,它也是可以运用罗尔中值定理的,即\exists\xi\in(0,1) 使得f'(\xi)=0 (甚至还有无穷多个):

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值