微分中值定理—柯西中值定理

微分中值定理—柯西中值定理

前面我们已经学习了罗尔中值定理,和拉格朗日中值定理,它们的相同点是,研究的曲线都能用函数来表示。那假如曲线不能被函数表示呢,用柯西中值定理

1 定义

 柯西中值定理是拉格朗日中值定理的推广。如果,我们把研究对象扩展到两个函数,然后,将结论\frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)} ,再加上分母不为零的条件。那么拉格朗日中值定理,就成了我们的柯西中值定理如果函数f(x) 及g(x) 满足

那么\exists\xi\in (a,b) ,使得\frac{f(b)-f(a)}{g(b)-g(a)}g'(\xi)=f'(\xi) 。如果此时还有g'(\xi)\ne 0 ,那么该式可改写为:

\frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)}

定义看完了,下面来看看它的几何意义

2 几何意义

要直观理解柯西中值定理,需要将f(x) 和g(x) 组成参数方程组。为了符合习惯,这里的自变量用t 来表示,即假设有参数方程:

\begin{cases}x=g(t)\\y=f(t)\end{cases}

下面以g(t) 为横坐标,f(t) 为纵坐标,建立坐标系。起点为t=a 时的位置[g(a),f(a)] ,终点为t=b 时的位置[g(b),f(b)] 。

连接起点与终点,做出一条割线,那么\frac{f(b)-f(a)}{g(b)-g(a)} 表示的就是割线的斜率。而\frac{f'(\xi)}{g'(\xi)} ,表示的是,\xi 这个位置,切线的斜率。

这样柯西中值定理的结论就是,曲线上至少有一点,它的切线的斜率与割线斜率是相等的。从几何上来讲,也就是\xi 这个点的切线,与割线是平行的。

3 联系

前面说过,拉格朗日中值定理是罗尔中值定理的推广,这在几何上就可以体现。比如下面这条蓝色曲线,因为它能用函数表示,且闭曲间连续,开区间可导。所以符合拉格朗日中值定理。

下面假设g(x)=x ,那么实际上,这条曲线也可以用参数方程来表示,因此,它也是符合柯西中值定理的。

还是这条曲线,固定起点不变,对终点进行拉伸,此时,这条曲线无法再用函数表示,也就不符合拉格朗日中值定理。

现在,我们将横坐标用g(x) 表示,纵坐标用f(x) 表示,那么,它符合的是柯西中值定理。

把两张图放在一起,可以很明显地看出,拉格朗日中值定理仅为g(x)=x 时的特殊情况。

4 证明

4.1 证明方法一

首先来看一个错误的证明方法:

由于f(x),g(x) 在[a,b] 上都满足拉格朗日中值定理的条件,故\exists\xi\in(a,b) ,使得:

如果有g(a)\ne g(b) 以及g'(\xi)\ne 0 ,那么上述两式相除可得:

\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}

上述方法是错误的。因为对于两个不同的函数f(x) 和g(x) ,拉格朗日中值定理中的\xi 未必相同,比如下面两个函数

假如将函数g ,与函数f 联合在一起,建立参数方程

\begin{cases}x=g(t)\\\\y=f(t)\end{cases}

那么,以g 为横坐标,f 为纵坐标建立坐标系,做出自变量在0到1范围内的参数方程图像。可以看到,当自变量取值为\frac{2}{3} 时,满足柯西中值定理。

从这个例子我们就可以看出,这种方法是不正确的。

4.2 证明方法二

正确的证明方法如下:因为g(a)\ne g(b) ,所以构造辅助函数:

F(x)=f(x)-\frac{f(b)-f(a)}{g(b)-g(a)}g(x)

容易知道,F(x) 满足:

所以根据罗尔中值定理\exists\xi\in(a,b) 使得F'(\xi)=0 ,即:

F'(x)|_{x=\xi}=\left.f'(x)-\frac{f(b)-f(a)}{g(b)-g(a)}g'(x)\right|_{x=\xi}=f'(\xi)-\frac{f(b)-f(a)}{g(b)-g(a)}g'(\xi)=0

由此可得\frac{f(b)-f(a)}{g(b)-g(a)}g'(\xi)=f'(\xi) ,如果g'(\xi)\ne 0 ,那么该式可改写为\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)} 

跟着马同学,看图学数学,欢迎加入马同学图解数学

马同学图解数学系列课程https://matongxue.taobao.com/

  • 7
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值