人工智能(AI)的发展正在进入一个新的阶段,智能体(Agent)技术正迅速成为当前AI应用系统研发的核心。过去AI往往作为单点解决方案用于特定任务,如图像识别、自然语言处理或机器人自动化。随着大语言模型(LLM)的爆发式发展,AI智能体的能力得到了极大的扩展,它们不仅能理解复杂的自然语言指令,还能自主规划、执行任务,并与其他系统无缝协作。
LLM智能体的强大能力带来了一个新的问题:互操作性。在现有的AI基础设施中,不同的智能体通常由不同的架构、协议和技术栈构建,导致系统之间难以直接交互。例如,一个智能客服系统可能使用特定的API调用后端数据库,而一个自动化数据分析智能体则可能依赖微服务架构来获取数据。如果这些智能体无法有效沟通,就会导致信息孤岛,降低工作效率,并影响AI系统的整体稳定性。
除此之外,智能体间的通信还涉及安全性、上下文共享、任务编排等复杂问题。随意构建的互操作性解决方案往往难以扩展,安全性得不到保障,也无法满足跨行业和跨组织的需求。因此,标准化的智能体通信协议对于实现模块化、可扩展和安全的AI智能体生态至关重要。
要使LLM智能体真正发挥其潜力,需要一种标准化的互操作性协议,使得不同类型的智能体可以通过通用的规则进行数据交换、能力共享和任务执行。这样的协议不仅能提高开发效率,还能确保安全性、稳定性,并且适用于多个应用场景。
目前,全球专注该领域的研究者们提出了多个智能体互操作协议,旨在解决这一问题。其中,模型上下文协议(MCP)、智能体通信协议(ACP)、智能体到智能体协议(A2A)和智能体网络协议(ANP)是当前最具代表性的四种标准。这些协议涵盖了从单智能体工具调用到去中心化的全球智能体协作,构建了一个分层次的智能体互操作框架,为LLM智能体生态奠定了坚实的基础。
5 月 6 日,arXiv 热文《A SURVEY OF AGENT INTEROPERABILITY PROTOCOLS: MODELCONTEXT PROTOCOL (MCP), AGENT COMMUNICATIONPROTOCOL (ACP), AGENT-TO-AGENT PROTOCOL (A2A), AND AGENT NETWORK PROTOCOL (ANP)》对智能体互操作性协议进行全方位调研,探索这四种协议的设计理念、架构、应用场景以及它们如何解决智能体通信中的关键问题。
- MCP(模型上下文协议):适用于LLM与外部工具和数据交互,确保任务执行的安全性和一致性。
- ACP(智能体通信协议):提供一种REST-native消息传递机制,使代理能够进行异步、富数据的交互。
- A2A(智能体到智能体协议):允许多个智能体协同工作,支持任务编排和动态发现。
- ANP(智能体网络协议):用于开放互联网环境,实现去中心化的智能体发现、认证和协作。
我们将详细解析这四种协议在安全性、扩展性和互操作性方面的优势和局限,并结合当前AI发展的需求,探讨它们在未来AI智能体生态中的应用前景。
这项研究由来自美国四所知名大学的研究人员共同完成,他们在智能体技术、分布式系统、人工智能通信协议方面具有深厚的研究积累。
Abul Ehtesham(肯特州立大学,Kent State University):专注于LLM驱动的智能代理架构,研究如何标准化模型上下文数据,以优化AI系统的可扩展性和任务协调能力。
Aditi Singh(克利夫兰州立大学,Cleveland State University):研究智能体间的消息传递协议,特别是在企业级应用中的任务编排和代理协作。
Gaurav Kumar Gupta(杨斯敦州立大学,Youngstown State University):关注智能体安全性和稳定性,探索如何在大规模多智能体系统中保持可靠性。
Saket Kumar(东北大学,Northeastern University):专注于去中心化智能体网络,研究如何利用DID(去中心化标识符)和语义Web技术,实现开放式代理发现和认证。
这些研究人员的合作不仅涵盖了智能体的底层通信协议,还涉及安全性、系统架构和去中心化互操作性,为未来智能体标准的发展提供了全面而深入的分析。
01
智能体互操作性协议概述
(1)智能体互操作性的挑战
图1:针对代理通信挑战的协议一致解决方案
上下文标准化缺失
在大语言模型(LLM)驱动的智能体生态中,上下文是智能体执行任务的关键。当一个智能体试图完成某项工作,比如代码生成、数据库查询或文档摘要,它需要一个完整的、结构化的上下文——包括输入数据、外部资源、任务目标等。然而当前的应用架构并没有统一的机制来向LLM传递结构化上下文,这导致工具调用的随意性,影响智能体的稳定性和可预测性。
以智能客服系统为例,它可能需要从多个数据库获取用户历史记录,同时结合实时数据提供个性化回应。如果上下文传输缺乏标准化,每个智能体都需要定制化处理数据流,增加了维护成本和复杂度。MCP(模型上下文协议)正是为了解决这一问题,它定义了一种类似于“AI的USB-C标准”,使智能体能够安全、稳定地获取所需的工具、数据集和采样指令。
异构代理间通信障碍
AI智能体正在跨越多个平台和系统进行操作,例如在企业环境中,我们可能会有一组自动化AI助手,分别负责财务分析、客户管理和市场预测。然而,这些智能体通常构建在不同的技术栈上,有的使用Python,有的使用Java,甚至不同智能体的通信方式也各不相同,有的依赖WebSocket,有的基于REST API。
这种碎片化的技术环境导致智能体的行为孤立,无法顺畅协作,最终影响业务流程的连贯性。ACP(智能体通信协议)提出了一种基于REST的、SDK无依赖的消息传递标准,支持异步交互,并保证了智能体之间的厂商无关性。它如同企业内部的翻译官,确保各个智能体能够以标准化的方式进行信息交换,突破通信障碍。
协作标准缺失
即使智能体之间能够通信,它们仍然缺乏一套共同的规则来定义任务的协作方式。例如,在一个企业自动化系统中,一个智能体可能负责数据整理,另一个智能体需要调用它的整理结果进行业务分析。如果没有一个明确的任务协作框架,智能体可能无法合理分配任务、共享能力,甚至在协作过程中出现冲突或资源竞争。
A2A(智能体到智能体协议)正是为了解决这一痛点而提出的。它建立了一个标准化的通信框架,使智能体能够发现彼此的能力,并进行动态协商。例如,一个数据分析智能体可以发现另一个智能体可以处理数据库查询,并自动将查询任务委派给对方,这样智能体之间形成了一种类似企业内部工作流的自动化协作机制。
互联网环境对自主智能体的不友好
虽然现代互联网已经优化了人与人之间的交互,但它并不是为自主智能体设计的。智能体通常需要低延迟、API驱动的通信,以及去中心化的身份认证。然而现有的互联网协议通常围绕人类交互进行设计,例如网页浏览或电子邮件,这导致智能体在开放网络中难以发现彼此,并且难以进行安全验证。
为了解决这个问题,ANP(智能体网络协议)提出了一种基于去中心化身份(DID)的智能体发现与认证机制,使得智能体能够通过分布式身份进行自动验证,并利用JSON-LD语义网技术进行跨平台协作。这意味着,未来智能体可以像人类用户一样,在全球网络环境中自动发现其他智能体,并与可信的智能体建立安全连接。
(2)各协议出现的背景与发展
不同协议针对的互操作性层级和应用场景
随着AI技术的不断进步,智能体互操作性的需求从封闭系统逐步向开放式生态发展。不同协议针对不同的应用场景而设计,形成了一个层次化的智能体交互框架:
- MCP(模型上下文协议):主要用于LLM与工具的交互,适用于封闭环境,确保数据上下文的标准化传输。
- ACP(智能体通信协议):侧重于智能体消息传递,支持本地多智能体系统,使异构代理能够进行REST-native通信。
- A2A(智能体到智能体协议):解决企业内部智能体任务委派问题,支持能力共享、任务流转和工作协作。
- ANP(智能体网络协议):基于去中心化身份,支持开放互联网环境,使智能体能够在全球范围内发现和协作。
这些协议可以看作是智能体互操作性的不同层级,从最基础的工具调用,到企业级协作,再到全球范围的智能体网络,每一层都解决了特定的通信与安全问题。
协议演进的历史脉络和未来趋势
表:关键代理互操作性里程碑时间表
智能体通信协议的演进可以划分为三个阶段:
- 1.符号通信与SOA架构(1993-2006):
- 早期的KQML(知识查询语言)和FIPA-ACL(智能体通信语言)奠定了基础,提供了一套针对知识系统的通信语义。
- Web服务(SOAP、WSDL)出现,推动了服务间的信息交换,但其高复杂度限制了智能体的适用性。
- 2.检索增强与模型内调用(2020-2023):
- 伴随LLM的兴起,RAG(检索增强生成)技术使得LLM能够结合外部数据进行更准确的输出。
- OpenAI的函数调用(Function Calling)让LLM能够直接发出结构化JSON任务请求,实现工具调用的标准化。
- 3.去中心化智能体网络(2024-2025):
- MCP、ACP、A2A和ANP的提出使得智能体能够形成层级化互操作网络。
- ANP的引入开启了去中心化智能体发现的新纪元,使智能体能够在开放互联网环境中自主协作。
智能体互操作性协议将继续发展,并与区块链、可信计算和自动化智能体编排技术结合,构建更加安全、可扩展、智能化的多智能体生态系统。
02
模型上下文协议(MCP)
LLM智能体的标准化工具调用与上下文传输
(1)MCP概述:连接LLM与工具的桥梁
随着大语言模型(LLM)在智能体领域的应用越来越广泛,如何让它们有效地与外部工具交互成为一个关键问题。LLM虽然具有强大的自然语言处理能力,但它本身并不具备对外部世界的直接操作能力。例如,一个AI助手可以回答问题,但如果它需要检索实时数据、执行代码或访问数据库,就必须依赖外部工具。然而,这种工具调用通常是非标准化的,不同应用场景需要不同的集成方式,导致系统间的兼容性较差,扩展性受限。
MCP(模型上下文协议)的提出正是为了解决这一难题。它提供了一种安全、标准化的通信协议,使LLM智能体能够可靠地访问外部工具,传递上下文数据,并优化工作流。可以将MCP看作是AI世界的“USB-C”接口,它让不同的智能体能够顺畅地接入各种服务,而不需要针对每种工具进行定制化适配。
MCP的核心目标包括:
- 标准化工具调用:确保LLM能够一致、稳定地访问外部资源,不受特定供应商或架构的限制。
- 安全的上下文传输:在调用工具时传递结构化数据,确保上下文信息完整且可复用。
- 优化多智能体协作:提高智能体在复杂任务中的协调能力,使其能更好地支持企业级应用和多步骤任务。
(2)MCP架构设计:客户端、服务器与通信层
MCP采用客户端-服务器架构,其中客户端应用(Host)负责请求工具访问,MCP服务器则提供相应的数据、服务和管理功能。这种设计确保了系统的安全性,同时避免了碎片化的工具调用方式。
图2:互操作性时间表
客户端应用(Host)
客户端应用是MCP系统的交互起点,它负责与MCP服务器建立连接,并协调整个工作流。主要职责包括:
- 会话初始化:确保LLM代理能够与MCP服务器正确建立通信,包括协议版本协商与能力交换。
- 错误处理:在通信失败或工具调用异常时,提供恢复机制,如重试、回退或通知用户。
- 异步通知管理:处理服务器的推送消息,如任务状态更新或工具能力变更,以提高交互效率。
客户端应用不仅仅是一个简单的工具请求方,它还承担着智能体任务编排的责任,确保信息能够在不同工具和不同任务之间合理流转。
图3:MCP概述
MCP服务器:提供数据、工具调用与协作能力
MCP服务器是协议的核心支撑点,它管理智能体工具调用的上下文,并确保所有交互符合安全性和访问控制要求。主要提供以下功能:
- 上下文数据(Resources):让LLM能够访问结构化数据,如数据库查询结果、文档或实时信息。
- 工具调用(Tools):使LLM能够执行外部API请求,例如代码执行、事务处理或网络搜索。
- 提示管理(Prompts):提供可复用的提示模板,使智能体能在不同交互场景下保持一致性。
- 文本采样(Sampling):支持服务器端LLM推理,并调节输出参数,如生成温度、文本长度等。
此外,MCP服务器还需确保安全策略,包括:
- 访问控制:限定工具的调用权限,避免未经授权的API访问。
- 日志追踪:记录所有交互行为,以便调试和审计。
- 加密传输:保障数据在传输过程中的安全性,防止恶意篡改。
(3)MCP的核心组件与功能
MCP的架构建立在四大核心模块之上:
1.Tools(工具):智能体可调用的外部API或服务,用于访问实时信息或执行计算任务。
2.Resources(资源):为LLM提供结构化的数据,使其能根据预定义的上下文生成更精准的响应。
3.Prompts(提示):定义智能体的交互模式,避免重复性指令输入,提高交互质量。
4.Sampling(采样):控制LLM的文本生成参数,实现更稳定的任务执行。
此外,MCP采用分层架构,以提高扩展性和稳定性:
- 协议层(基于JSON-RPC 2.0):提供标准化的消息格式,确保工具调用的可预测性。
- 传输层(Stdio/HTTP+SSE):支持本地通信和网络通信,允许异步消息推送。
- 消息类型:
- 请求(Request):客户端调用工具,并期望服务器返回数据。
- 结果(Result):服务器成功返回调用结果。
- 错误(Error):返回异常信息,指示调用失败或权限问题。
- 通知(Notification):推送异步更新,无需客户端确认。
(4)MCP连接生命周期:从初始化到任务终结
MCP通信流程分为三个阶段:
- 1.初始化(Initialization)
- 确认协议版本兼容性,确保客户端和服务器都支持最新的MCP标准。
- 交换能力,如服务器是否支持特定工具、是否提供日志功能。
- 发送initialize通知,表示客户端准备好进行通信。
- 2.运行(Operation)
- 执行任务请求,例如调用API、查询数据或触发计算。
- 服务器推送异步通知,如任务执行进度或能力变更。
- 任务可设置超时时间,如果在预定时间内未收到响应,客户端可发送取消通知。
- 3.关闭(Shutdown)
- 终止传输层(如HTTP或Stdio连接)。
- 清理会话数据,释放内存,确保不留残留进程影响系统稳定性。
- 执行日志归档,确保可追溯性和安全审计。
(5)安全挑战与缓解策略:确保MCP的稳定性与安全性
MCP在工具调用过程中面临多个安全挑战:
- 工具污染(Tool Poisoning):如果恶意API被调用,可能导致数据污染或安全风险。
- 命令注入(Command Injection):如果输入未经过适当过滤,LLM可能执行未授权的系统指令。
- 权限滥用(Privilege Persistence):智能体可能获取长期访问权限,超出原有范围。
针对这些风险,MCP采用了多种安全措施:
- 白名单机制:仅允许可信工具被调用,防止未授权访问。
- 沙箱环境:隔离工具执行,防止恶意代码影响系统。
- 数字签名:确保数据的完整性,防止调用过程中被篡改。
- TLS加密:所有数据传输都使用安全加密,防止窃听或中间人攻击。
MCP为LLM智能体提供了一种标准化、可扩展且安全的工具调用协议,使其能够与外部数据和服务顺畅交互。它不仅解决了智能体上下文传输的混乱问题,还优化了智能体与工具之间的协作方式。随着AI应用场景的不断扩展,MCP有望成为LLM智能体生态的关键基础设施,推动智能体通信迈向更高效、更安全的未来。
03
ACP(智能体通信协议)
标准化、多模态的智能体交互桥梁
(1)ACP概述:构建智能体间的高效通信
图4:ACP概述
随着多智能体系统的广泛应用,智能体不仅需要执行任务,还必须高效地交换信息、协同决策,甚至进行多轮交互。在人工智能生态中,传统的点对点API调用方式难以满足智能体之间的复杂需求,尤其是在异构环境下,系统通常依赖不同的框架、数据格式和认证方式,导致交互困难。
ACP(智能体通信协议,Agent Communication Protocol)正是为了解决这一问题而设计的。它提供了一种REST-native的交互机制,支持多模态数据传输,并保证通信的异步性、可扩展性和安全性。ACP不仅支持文本交互,还可以在任务请求中嵌入二进制数据、结构化消息以及多部分文件传输,使得智能体能够在丰富的信息流环境中流畅合作。
ACP适用于:
- 需要复杂消息交互的智能体,如金融分析智能体、自动化数据处理系统。
- 支持富数据传输的应用场景,如AI驱动的文件分析、视频处理、音频交互。
- 多轮对话与实时任务管理,确保智能体能够在上下文不丢失的情况下保持连续性和信息一致性。
(2)ACP的核心组件:标准化智能体发现、任务编排与数据交换
代理详情(Agent Detail)
智能体要能顺利协作,必须首先明确自身能力,这就需要一个标准化的描述文件。ACP引入了自描述文件(Agent Detail),使用JSON或YAML格式记录智能体的元数据、支持的任务、交互方式和身份验证机制,确保外部系统可以安全地发现和调用智能体的功能。
该文件包含:
- 代理名称(唯一标识该智能体)
- 可执行操作(例如数据查询、语言处理、计算任务等)
- 支持的内容类型(文本、二进制、结构化数据等)
- 认证方式(如OAuth 2.1、API Key、JWT令牌验证)
- 运行状态与系统诊断信息(支持动态监测代理的可用性)
为什么需要代理详情? 因为在一个复杂的AI系统中,智能体通常需要自动发现可用的任务执行端点。如果没有统一的代理描述方式,发现和调用其他智能体时就会遇到大量兼容性问题。ACP通过自描述文件解决这一问题,使得智能体可以即插即用,无需人工调整配置。
发现机制(Discovery Mechanisms)
ACP支持中心化与去中心化的代理发现机制,使客户端可以灵活选择如何检索智能体:
- 1.中心化发现:
- 使用注册表API维护所有可用智能体的索引,类似于企业内部的服务发现机制。
- 客户端可以查询API,获取完整的代理能力列表,并选择最合适的执行端点。
- 2.去中心化发现:
- 智能体可以在标准化路径(如 /.well-known/agent.yml)公开自己的能力信息,使得其他智能体可以在互联环境下自动检索。
- 在基于容器或微服务的架构中,ACP还支持智能体嵌入代理元数据到环境变量或部署配置中,确保无缝集成。
这种灵活的发现方式确保ACP智能体能够适应不同的部署场景,无论是在企业级内网环境,还是开放互联网下,都可以高效定位可用的智能体服务。
任务请求(Task Request)与消息结构
ACP采用标准化消息结构,确保所有任务请求的格式一致,使得智能体能够高效解析和处理信息。
- 1.任务请求(Task Request):
- 包含目标操作(如 analyze_text、fetch_data)。
- 允许嵌入文本、二进制数据或远程文件引用。
- 任务可配置为同步执行或异步处理,支持长时间运行的任务。
- 2.消息格式(Message Structure):
- 多部分消息:支持MIME类型标注,明确数据类型。
- 嵌入内容或外部URL:智能体可选择直接处理嵌入数据,或通过URL拉取远程资源。
- 任务状态管理:消息可以包含任务进度标记,如in_progress、completed,确保高效跟踪任务执行情况。
ACP的消息结构使智能体能够灵活适应不同的数据处理任务,并确保跨系统的无缝交互。
任务成果(Artifacts)
每个智能体执行完任务后,都需要将结果返回给调用方。ACP使用任务成果(Artifacts)作为标准化输出格式,确保结果的可解析性、可扩展性,并支持链式处理。
任务成果可以包括:
- 结构化JSON输出(适用于数据查询、知识检索任务)。
- 纯文本完成(适用于语言模型输出)。
- 二进制文件(适用于图像分析、音频处理)。
- 嵌套消息引用(适用于智能体间任务协同,如数据转换→分析→报告生成)。
智能体可以通过Artifacts将输出结果进一步传递到下游任务,形成更复杂的多步骤AI工作流。
(3)ACP代理生命周期管理:从创建到安全关闭
创建阶段
智能体在启动时,需要配置并发布代理详情清单(Agent Detail Manifest):
- 代理初始化时声明自身能力,并开放API或消息队列。
- 配置身份验证机制,确保安全发现与调用。
- 向注册表或去中心化发现目录发布自己的元数据。
运行阶段
智能体接受任务请求,并进行处理:
- 接收任务(Task Request),解析输入数据。
- 任务可以是同步执行或流式处理(如连续分析音频流)。
- 维护任务状态,确保多轮交互的完整性。
更新阶段
智能体的能力可能会发生变化,如新增操作或修改支持的数据格式:
- 更新代理详情清单,确保向后兼容。
- 客户端可以自动发现新能力,无需额外适配。
终止阶段
智能体需要安全地退出系统:
- 关闭所有任务,确保数据完整性。
- 注销代理注册信息,防止错误发现。
- 释放资源,清理会话状态。
(4)安全考量:如何确保ACP通信的安全性?
ACP在生命周期的不同阶段面临诸多安全挑战:
- 元数据篡改:攻击者可能伪造代理详情文件,冒充可信智能体。
- 消息篡改:恶意智能体可能修改请求或响应消息,导致数据泄露或错误执行。
- 认证漏洞:弱身份验证机制可能使未授权智能体执行任务。
针对这些问题,ACP采用:
- 数字签名:确保代理详情文件的真实性。
- 短时令牌:限制令牌作用域,防止长期权限滥用。
- TLS加密:保护传输数据,防止中间人攻击。
- 日志审计:记录所有任务执行过程,确保可追溯性。
ACP提供了一种标准化、可扩展、安全的智能体通信机制,使AI系统能够在复杂环境中流畅交互。随着多智能体生态的不断发展,ACP将在多模态任务执行、企业级协作和跨平台智能体交互中发挥越来越重要的作用。
04
智能体互操作性协议
A2A(智能体到智能体协议)
(1)企业级多智能体协作的需求:为什么需要A2A?
随着企业自动化和人工智能技术的发展,智能体已经不仅仅是单独执行任务的工具,而是逐渐成为需要相互协作的自治系统。在企业环境中,我们经常看到多个智能体同时运作,比如:
- 客户服务智能体负责处理用户询问
- 财务分析智能体执行预算计算
- 市场预测智能体分析数据趋势
这些智能体通常具备不同的专长,并需要在共同工作流下进行任务分配。然而在传统的智能体架构下,它们通常通过中心化服务器或预定义API进行调用,导致扩展性有限,跨智能体通信复杂,任务调度不够灵活。
A2A(Agent-to-Agent Protocol,智能体对智能体协议)的提出,正是为了解决这些痛点。它允许智能体之间点对点(Peer-to-Peer)沟通,而不依赖单一中央控制系统,使智能体能够自适应发现彼此的能力,并根据任务需求进行动态协作。
(2)智能体任务分配的新方式:从单体调用到智能体间点对点沟通
传统智能体通信的局限性之一是中心化任务调用,即一个智能体向中心服务器提交任务,服务器再分配给合适的执行智能体。这种方式虽然适用于简单的单任务处理,但在多智能体协作环境中会带来以下问题:
- 调度效率低:所有任务必须经过服务器路由,增加延迟
- 适应性差:如果某个智能体的能力变化,调度系统可能无法实时调整
- 单点故障:中心化系统如果出现问题,整个智能体网络可能崩溃
A2A协议则采用分布式交互,智能体可以直接发现其他智能体的能力,并决定是否合作或任务外包。这种方式不仅提高了智能体的自适应性,还允许智能体在无需中心调度的情况下自主形成任务流。
(3)A2A架构组成:三个关键角色
图5:A2A概述
用户(User)——任务的发起者
A2A协议的交互从任务发起者开始,这个角色可以是:
- 人类用户,例如企业员工在工作流系统中提交任务
- 自动化系统,例如财务数据分析智能体自动生成预测请求
- 智能体本身,即一个智能体触发另一个智能体执行后续任务
无论用户身份如何,他们都不会直接与远程智能体交互,而是通过客户端代理(Client Agent)处理任务请求。
客户端代理(Client Agent)——任务调度与智能体发现
客户端代理的核心职责是代表用户意图,并找到合适的远程代理来执行任务:
- 发现可用智能体:客户端代理会检索代理卡(Agent Card),确定哪些远程代理可以执行该任务
- 构建任务请求:它将用户的需求转换为结构化任务对象,并发送给远程智能体
- 处理任务交互:客户端代理负责任务的跟踪、更新和最终结果的返回
客户端代理不仅是一个任务分配工具,它还承担了智能体协作过程中的调度协调与错误处理,确保任务执行的流畅性。
远程代理(Remote Agent)——任务执行者
远程代理是实际执行任务的智能体,它通过A2A协议提供:
- 技能(Skills):定义远程智能体的能力,例如数据分析、语言处理、图像识别等
- 任务(Task):由客户端代理提交的工作请求,远程代理根据技能进行执行
- 消息(Messages):任务的中间状态,如执行进度、错误报告等
- 成果(Artifacts):最终任务结果,如计算报告、预测模型或文档摘要
远程代理可以是完全自治的智能体,也可以是与其他智能体合作的任务执行端,它们通过A2A协议相互发现,并构建自动化任务工作流。
(4)核心组件与交互流程
代理卡(Agent Card)——智能体的能力公告
智能体要能被其他智能体发现,需要发布代理卡(Agent Card),其中包含:
- 技能列表:智能体可执行的任务类型
- 输入/输出格式:远程代理接收任务的数据格式及返回结果的格式
- 认证方式:远程智能体是否需要API密钥或身份验证
- 任务路由信息:智能体如何与其他智能体协作
代理卡的作用类似于企业内部的“服务目录”,智能体可以查阅哪些服务可用,并自动选择适合的执行端。
消息传输方式:支持实时与异步交互
A2A协议支持多种通信机制:
- 实时传输(SSE、Push Notifications):用于高频交互场景,如聊天机器人、数据流计算
- JSON-RPC任务交换:适用于标准化任务提交与状态查询
这种灵活的通信方式使得智能体不仅可以实时处理请求,还可以异步执行长时任务,适应企业级多任务工作流。
(5)A2A远程代理生命周期:如何管理智能体协作?
创建阶段
智能体需要发布代理卡,并启动任务执行服务。远程代理还需支持身份验证,确保外部智能体的调用安全。
运行阶段
远程智能体接受任务,并进行执行:
- 任务跟踪:监测执行进度,并定期发送更新
- 结果返回:任务完成后,返回结构化成果(Artifacts)给客户端代理
更新阶段
智能体能力可能随时间调整,例如:
- 新增技能,如数据分析智能体支持新数据格式
- 更新认证机制,采用更安全的访问控制方式
客户端代理可以动态检索更新后的代理卡,无需人工干预。
终止阶段
远程智能体需要确保任务完成并清理资源:
- 注销代理卡,防止过时能力被调用
- 安全释放数据,删除临时存储的任务信息
(6)A2A安全挑战与应对策略
在智能体点对点交互中,安全性至关重要。以下是几个主要安全威胁:
- 代理卡伪造:恶意智能体可能伪装成可信代理,导致错误任务分配。
- 任务注入:攻击者可能向远程智能体提交恶意任务,影响系统稳定性。
- 推送劫持:未经认证的通知可能被拦截或伪造,影响任务跟踪。
- 权限持久化:智能体可能长时间保持访问权限,导致安全风险。
安全防护措施
- 数字签名:确保代理卡的真实性,防止伪造攻击。
- TLS加密:保护任务数据传输,防止中间人攻击。
- 访问日志审计:记录所有任务调用,确保可追溯性。
- 自动化监控:检测异常任务执行行为,及时终止可疑进程。
A2A协议提供了一种灵活、自适应、安全的智能体协作框架,使智能体能够点对点发现彼此的能力,并动态调整任务工作流。随着企业级AI应用的发展,A2A将在分布式任务管理、多智能体自动化和安全智能体交互领域发挥越来越重要的作用。
05
ANP(智能体网络协议)
去中心化智能体的全球互联标准
(1)ANP概述:智能体如何在开放互联网中协作?
图6:ANP概述。
当人工智能智能体的应用从封闭企业系统扩展到开放互联网时,如何让它们自主发现彼此、建立可信连接并进行安全交互,成为了新的挑战。传统的智能体通信协议,如MCP、ACP和A2A,通常用于企业环境或特定平台,但如果智能体需要在全球范围自由发现服务、跨平台交互,并确保数据隐私和安全性,现有的架构就显得力不从心。
智能体网络协议(Agent Network Protocol,ANP)应运而生,它是一种去中心化、跨平台的通信标准,专门针对开放网络环境中的智能体交互。ANP结合去中心化身份(DID)和JSON-LD语义网络,实现智能体的自我描述、全球发现和安全验证,使其能够在开放互联网环境中像人类用户一样自主行动,而不依赖中心化服务器或预设的注册表。
(2)ANP的设计理念:用DID和JSON-LD构建全球智能体互联
在开放互联网环境下,智能体的发现和通信必须具备三个核心特性:
- 1.身份唯一性与可信性:每个智能体都需要拥有唯一、不可伪造的身份,以确保安全交互。ANP采用去中心化身份(Decentralized Identifiers,DID)作为身份验证标准,避免传统中心化认证的安全漏洞。
- 2.标准化的能力声明:智能体需要公开自身可提供的服务,以便其他智能体发现和调用。ANP使用JSON-LD格式的代理描述(Agent Description Protocol,ADP),使智能体能够自描述能力,并通过语义查询进行匹配。
- 3.自适应发现与通信:智能体在全球范围内需要能够自动发现和交互,ANP采用发现目录(Discovery Directory),智能体可通过标准化路径检索可用服务,并进行动态协商。
这些核心理念使得ANP成为去中心化智能体生态的基础通信标准,推动全球智能体的自主协作。
(3)ANP核心组件:让智能体自由发现和安全连接
代理身份(Agent Identity):用DID保证智能体的唯一性
在传统的智能体系统中,身份验证通常依赖API密钥或OAuth等机制,但这些方法依赖于中心化授权服务器,一旦服务器崩溃或受到攻击,所有智能体将无法继续认证。
ANP采用去中心化身份(DID)作为智能体的身份标识。例如,使用did:wba方法,每个智能体都会获得一个全球唯一的去中心化标识符,它关联到一个HTTPS托管的DID文档,并存储在分布式网络中,使得身份验证不受单一服务器的控制。
DID的作用:
- 确保智能体身份的唯一性,避免伪造攻击。
- 使智能体在全球范围内可被安全发现和验证。
- 提供基于公钥加密的身份验证机制,提高安全性。
代理描述(Agent Description):让智能体自我表达
智能体不仅需要一个唯一身份,还需要明确声明自己的功能和交互方式。ANP使用JSON-LD格式的代理描述文档(ADP),其中包括:
- 智能体名称与版本信息
- 支持的协议与能力(如数据检索、任务执行、语音交互)
- 认证方式(如DID验证、API密钥或OAuth)
- 可用的服务端点
这些信息存储在智能体的/.well-known/agent-descriptions目录中,使得任何智能体都可以通过HTTP请求检索可用智能体。
发现目录(Discovery Directory):智能体如何找到彼此?
ANP支持两种发现方式:
- 1.去中心化发现:智能体在自己的服务器上存储代理描述文档,其他智能体可以通过网络爬取进行发现。
- 2.搜索代理:智能体可向去中心化搜索索引注册自身服务,使得查询智能体能够快速定位相关能力。
这种机制类似于DNS解析,但不依赖中心化服务器,而是使用去中心化分布式存储技术,使智能体能够在全球范围内进行自适应发现。
通信接口:智能体如何进行交互?
ANP的通信方式兼容多种标准:
- 结构化接口(如JSON-RPC、OpenAPI):用于精确任务调用,例如智能体之间的数据查询或事务处理。
- 自然语言接口(如YAML):用于智能体之间的非结构化交互,支持灵活任务协商。
这些接口使得不同类型的智能体能够在各种环境中顺畅交互,适用于从企业应用到开放互联网的场景。
(4)ANP代理生命周期管理:如何确保智能体的稳定运行?
创建阶段
- 生成DID,确保智能体身份的唯一性。
- 发布代理描述文件(ADP),定义能力和服务端点。
运行阶段
- 通过加密认证建立安全通信。
- 使用SSE(服务器发送事件)或长轮询支持实时交互。
更新阶段
- 智能体能力可能随时间变化,支持版本化管理。
- 发现机制可自动爬取最新智能体描述,确保服务可用性。
终止阶段
- 注销DID,防止过期身份继续使用。
- 撤销认证令牌,确保数据安全。
- 清理资源,防止遗留端点影响系统稳定性。
(5)ANP的数据传输与格式:如何确保安全与兼容性?
ANP的传输架构确保数据安全和标准化:
- HTTP(S) 作为安全传输通道,所有数据通信采用TLS加密,防止窃听和篡改。
- JSON-LD 作为数据格式,支持Schema.org语义标准,使智能体能够通过语义搜索发现能力,提高互操作性。
这使得ANP既能够保证数据安全,又能够确保智能体的语义一致性和跨平台兼容性。
(6)安全挑战与缓解措施:如何防止智能体网络攻击?
ANP的去中心化特性提高了安全性,但仍面临以下挑战:
- 身份伪造:攻击者可能伪造DID文档,使恶意智能体冒充可信智能体。
- 未验证代理:智能体可能绕过身份验证,影响任务执行安全性。
- 接口篡改:智能体可能篡改自身描述或恶意修改其他智能体的能力信息。
- 遗留标识符:智能体可能在终止后仍保留身份,导致误调用。
缓解措施
- HTTPS托管DID,确保身份真实性。
- DID签名校验,防止伪造攻击。
- 加密传输,确保智能体间通信不被篡改。
- 自动更新机制,定期爬取最新智能体描述,确保数据一致性。
ANP为去中心化智能体通信提供了一套标准化方案,使得智能体可以自主发现、可信交互、安全协作,解决了开放互联网环境下的身份认证、发现机制和数据交互难题。
随着去中心化AI技术的发展,ANP将成为全球智能体生态的关键基础设施,推动跨平台、多智能体协作,形成真正的去中心化智能体网络!
06
智能体互操作性协议对比
MCP、ACP、A2A 与 ANP
随着人工智能的智能体(Agent)架构逐步演进,不同的协议应运而生,以适应各种环境的智能体交互需求。从企业内部任务管理到开放互联网的自主智能体网络,每一种协议都针对特定场景优化,提供了不同的通信方式、身份验证机制以及任务编排能力。那么,MCP、ACP、A2A 和 ANP 四大智能体协议究竟有哪些异同?
(1)架构模式对比:集中vs. 去中心化,单体 vs. 多智能体
MCP(模型上下文协议):客户端-服务器模式
MCP采用传统客户端-服务器架构,专注于LLM(大语言模型)与工具的交互,确保数据流入和任务执行的一致性。它的作用类似于智能体的“工具接口”,提供了标准化的工具调用和数据上下文传输机制,使LLM能够访问外部API、检索数据或执行计算任务。
优势:
- 适用于封闭系统,如企业内部的AI工作流。
- 提供统一的工具调用接口,减少集成成本。
- 采用JSON-RPC标准化数据交互,提高兼容性。
局限:
- 集中化架构可能导致单点故障。
- 依赖服务器,智能体无法自主发现和交互。
ACP(智能体通信协议):中心化任务路由
ACP采用注册发现与任务路由的中心化架构,支持智能体之间的多模态交互。与 MCP 不同的是,它不仅限于工具调用,还支持智能体之间的富文本、结构化数据和二进制传输。企业系统可以通过注册表(Agent Registry)动态发现并调用智能体。
优势:
- REST-native,适用于现代应用集成。
- 任务支持同步执行与流式传输。
- 集中式管理提供企业级安全和监控。
局限:
- 依赖注册表,智能体无法自主发现。
- 适合企业环境,但对开放互联网支持有限。
A2A(智能体到智能体协议):点对点交互
A2A支持智能体之间的点对点交互,摆脱了中心化架构,使得多个智能体可以自主发现彼此,并建立动态任务工作流。它像是智能体生态中的“协作协议”,适用于跨团队任务调度、智能体外包和能力共享。
优势:
- 自适应发现,智能体可动态选择任务执行者。
- 任务可通过代理卡(Agent Card)进行能力匹配。
- 适合企业级智能体任务编排。
局限:
- 仍然偏向可信环境,智能体需要明确认证机制。
- 适用于企业和多智能体协作,但不适合完全开放网络。
ANP(智能体网络协议):去中心化的跨平台互联
ANP是最具突破性的协议,专为去中心化智能体网络设计。它使用DID(去中心化身份)和JSON-LD技术,让智能体可以自主发现、验证身份并进行全球范围的交互,不依赖任何中心化服务器。
优势:
- 去中心化发现,智能体可在互联网环境自由连接。
- DID身份验证,确保智能体安全可信。
- 适合全球智能体市场和跨平台互操作。
局限:
- 仍在早期发展阶段,生态建设尚需时间。
- 需要较高的计算资源支持去中心化身份解析。
(2)身份验证与消息格式:如何确保安全与兼容性?
协议
身份验证
消息格式
MCP
API令牌,可选DID
JSON-RPC 2.0
ACP
Bearer令牌、TLS、JWS
多部分消息(MIME)
A2A
代理卡认证
JSON结构化消息
ANP
去中心化身份DID
JSON-LD(Schema.org)
MCP 采用 API令牌 作为基础身份认证方式,而 ACP 和 A2A 则更注重集中管理,如 OAuth 令牌 或 智能体卡认证。ANP 则完全摆脱了中心化授权,使用去中心化身份(DID)进行认证,使得智能体可以在开放环境中安全通信。
在消息格式方面,MCP 以 JSON-RPC为标准,确保工具调用的可预测性;ACP 采用 多部分消息,支持富数据传输;A2A 采用 任务+成果模型,标准化智能体间任务交互;而 ANP 则使用 JSON-LD,使智能体能够理解彼此的语义信息,增强跨平台兼容性。
(3)传输层与会话管理:如何优化智能体通信?
各协议在数据传输和会话管理方式上存在显著差异:
- MCP使用 HTTP 和 Stdio,适用于同步工具调用。
- ACP使用 HTTP+SSE,支持流式数据传输。
- A2A结合 SSE+推送通知,支持智能体之间的异步交互。
- ANP采用 HTTPS+JSON-LD,支持分布式智能体网络。
此外,MCP 主要采用 无状态会话,适合单任务工具调用,而 ACP 和 A2A 通过 任务状态管理 维护长时任务交互。ANP 由于去中心化设计,采用DID身份+会话令牌 确保智能体跨平台的可信通信。
(4)主要优势与局限性:协议适用场景分析
协议
适用场景
优势
局限性
MCP
LLM与工具交互
统一工具调用
需中心服务器
ACP
多智能体富数据传输
多模态消息支持
依赖注册表
A2A
企业级智能体任务编排
自适应任务分配
适用可信环境
ANP
去中心化智能体网络
全球互联,无中心化依赖
生态建设尚需完善
对于企业应用而言,MCP 和 ACP 提供了稳定的工具访问和任务传输,适合企业内部智能体通信。而 A2A 则适用于多智能体任务协调,而 ANP 是针对开放互联网环境的智能体互操作,能够支持全球范围的智能体发现和交互。
(5)如何选择合适的智能体互操作协议?
每种协议都针对不同的应用场景优化:
- 如果需要智能体与工具交互,MCP 是最佳选择。
- 如果需要智能体间多模态消息传输,ACP 提供流式数据交互。
- 如果智能体需要任务编排和动态协作,A2A 适用于企业应用。
- 如果需要智能体在开放互联网环境中自主发现和通信,ANP 是理想方案。
随着人工智能技术的发展,未来可能会出现多协议融合的智能体生态,以满足不同层级的智能体交互需求。无论是封闭系统还是开放网络,MCP、ACP、A2A 和 ANP 的持续优化都将推动智能体互操作性的发展。
07
智能体互操作性协议调查
分阶段采用路径与未来展望
(1)分阶段采用策略:循序渐进构建智能体生态
随着智能体(Agent)技术的不断发展,各种互操作性协议——MCP、ACP、A2A 和 ANP——逐步形成了一个多层次的通信框架。从封闭企业系统到去中心化智能体网络,这些协议共同构建了标准化、多智能体、高度安全的AI生态。为了最大限度地提高智能体的可扩展性、安全性和任务协作能力,研究提出了一种分阶段的采用路线图,帮助企业和开发者逐步集成各协议,优化智能体通信能力。
阶段 1:MCP(模型上下文协议)——工具调用与数据集成
第一步是采用MCP(Model Context Protocol),它提供了LLM(大语言模型)与外部工具的标准化交互方式。MCP的设计主要解决上下文传输、工具调用和数据安全问题,使LLM能够稳定、可预测地调用外部API或数据资源,而不会受到不同工具格式的限制。
MCP适用于:
- AI助手与数据库系统的集成。
- 自动化代码生成(如通过MCP调用外部编程接口)。
- LLM驱动的企业数据检索(如金融分析、市场预测)。
MCP让LLM智能体拥有可复用的上下文标准,确保不同任务间的信息一致性,同时提高数据访问的安全性和合规性。
阶段 2:ACP(智能体通信协议)——多模态任务交互
在完成LLM与工具的集成后,下一步是采用ACP(Agent Communication Protocol),增强智能体间的富文本、结构化数据和异步消息交互能力。ACP提供了一种REST-native、多模态的消息架构,使智能体能够执行复杂任务,如数据处理、内容生成和事件驱动操作。
ACP适用于:
- 多智能体的富数据交互(如文本、音频、视频分析)。
- 语义增强对话(例如 AI 智能客服系统)。
- 流式任务执行(如数据流处理与实时分析)。
ACP让智能体具备异步任务执行能力,确保多个智能体能够无缝协调,而不会受限于传统同步调用的延迟问题。
阶段 3:A2A(智能体到智能体协议)——企业级智能体协作与任务编排
在解决智能体的工具访问和富数据交互问题后,下一步是采用A2A(Agent-to-Agent Protocol),实现智能体的自主任务委派、能力共享和动态协作。A2A采用代理卡(Agent Card)机制,允许智能体自主发现彼此的能力,并根据任务需求进行能力匹配和交互。
A2A适用于:
- 企业级任务编排:多个智能体自动分配任务,提高工作流效率。
- 智能体外包:智能体可以基于能力动态选择其他智能体执行任务(如 AI 生成内容 + 校验智能体)。
- 动态任务调整:支持智能体的任务灵活分配,优化跨部门业务处理。
A2A让企业能够构建高度自动化的智能体协作网络,减少人工干预,实现任务的智能分配与执行优化。
阶段 4:ANP(智能体网络协议)——去中心化智能体生态
当企业智能体网络发展成熟后,最终阶段是采用 ANP(Agent Network Protocol),让智能体能够在全球范围内自主发现、认证和通信。ANP突破了传统的中心化架构,使用去中心化身份(DID)和语义网(JSON-LD)技术,让智能体无需依赖中央服务器,也能在开放互联网环境中安全地协作。
ANP适用于:
- 开放互联网智能体互操作:智能体可以跨组织发现新服务,并自动建立可信连接。
- 去中心化任务协作:智能体在全球范围内找到最优服务提供方。
- 自主 AI 市场:智能体可以进行 AI 交易、数据交换,支持去中心化智能体经济。
ANP的采用将开启智能体的全球互联时代,推动 AI 技术的去中心化发展,避免单点故障,实现真正的全球 AI 生态系统。
(2)实施建议与挑战:如何部署智能体互操作性协议?
在实际部署过程中,企业和开发者需要考虑安全性、互操作性和可扩展性三大因素,以确保智能体能够顺畅运行,并避免数据泄露或兼容性问题。
安全性
- 身份认证机制:使用DID认证、API令牌或TLS加密,确保智能体安全通信。
- 任务权限管理:智能体应采用细粒度访问控制,防止权限滥用。
- 日志审计:智能体交互过程必须有可追溯性,提高安全管控能力。
互操作性
- 标准化数据交换:采用JSON-RPC(MCP)、多部分消息(ACP)或JSON-LD(ANP)。
- 动态能力发现:A2A和ANP可采用代理卡、语义网搜索优化智能体匹配机制。
- 跨协议兼容:确保智能体可以无缝切换不同交互协议。
可扩展性
- 分布式架构:ANP可以利用去中心化存储与计算优化智能体任务执行。
- 多智能体编排:ACP和A2A提供任务队列与负载均衡,优化执行效率。
- 自动更新机制:智能体应具备自动刷新代理卡,确保能力与安全策略始终更新。
(3)未来研究方向:推动智能体生态的进一步发展
跨协议互操作性桥梁 目前各协议仍然是相对独立的模块,未来可以建立协议桥接,例如:
- MCP + ACP:让工具调用能够支持富数据交互。
- A2A + ANP:智能体既能进行任务编排,又能进行去中心化发现。
统一信任框架与安全审计 未来的智能体生态需要一个统一的信任框架,通过身份认证、日志监控确保智能体网络的安全性和稳定性。
标准化评估指标与大规模应用案例探索 为了确保智能体技术的落地,应建立智能体互操作性评估体系,验证各协议在企业、开源社区和互联网环境中的适用性,并持续优化部署策略。
智能体互操作性协议的发展
通过MCP、ACP、A2A 和 ANP四个协议,我们正进入智能体全面互联、动态协作和去中心化智能体网络的阶段。从企业内部工具调用,到全球范围内的智能体市场,未来的 AI 生态将变得更开放、安全、智能。
在这个过程中,企业和开发者需要分阶段采用协议,逐步构建智能体能力,最终打造一个可持续发展的智能体网络,推动下一代智能体技术的创新和应用扩展。
智能体互操作性的发展,才刚刚开始!(END)
参考资料:https://arxiv.org/abs/2505.02279
亲爱的朋友们,为了确保您不会错过《独角噬元兽》的最新推送,请星标《独角噬元兽》。我们倾心打造并精选每篇内容,只为为您带来启发和深思,希望能成为您理性思考路上的伙伴!
加入AI交流群请扫码加微信