南大周志华团队获奖,AAAI 2025杰出论文奖出炉

88d834dd195b33a1f15546c3ea59f3bd.jpeg

来源:机器之心编辑部

自 2 月 25 日起,AAAI 2025 开始在美国宾夕法尼亚州费城举办,会议为期 8 天,将于 3 月 4 日结束。

AAAI 由国际人工智能促进协会主办,是人工智能领域历史最悠久、涵盖内容最广泛的国际顶级学术会议之一,也是中国计算机学会(CCF)推荐的 A 类国际学术会议,每年举办一届。AAAI 2025 共有 12957 篇有效投稿,录用 3032 篇,录取率为 23.4%。其中,Oral 论文占比 4.6%。

image.png

现在,AAAI 2025 杰出论文奖正式公布了,以表彰那些「在技术贡献和阐述方面体现最高标准」的论文。

本届杰出论文共有三篇,其中一篇由国内高校南京大学周志华团队斩获,其他两篇由多伦多大学、波尔多大学等机构的研究者获得。另外,还有一篇论文被选为「AI 对社会影响特别奖」。

三篇杰出论文

论文 1:Efficient Rectification of Neuro-Symbolic Reasoning Inconsistencies by Abductive Reflection

image.png

  • 论文地址:https://arxiv.org/pdf/2412.08457

  • 机构:南京大学

  • 作者:胡文超(Wen-Chao Hu)、戴望州(Wang-Zhou Dai)、姜远(Yuan Jiang)、周志华( Zhi-Hua Zhou)

论文摘要:神经符号 (Neuro-Symbolic,NeSy) AI 可以类比人类双过程认知,利用神经网络建模直觉系统 1,用符号推理建模算法系统 2。然而,对于复杂的学习目标,NeSy 系统通常会产生与领域知识不一致的输出,而且很难纠正它们。

本文受人类认知反射的启发,它能够及时发现直觉反应中的错误,并通过调用系统 2 推理来修改它们。作者提出引入基于溯因学习(Abductive Learning,ABL)框架的溯因反射(ABL-Refl)来改进 NeSy 系统。

具体来讲,ABL-Refl 利用领域知识在训练期间溯因反射向量,然后可以标记神经网络输出中的潜在错误并调用溯因来纠正它们并在推理期间生成一致的输出。与之前的 ABL 实现相比,ABL-Refl 效率很高。实验表明,ABL-Refl 的表现优于当前 SOTA NeSy 方法,以更少的训练资源和更高的效率实现了出色的准确性。

image.png

论文 2:Every Bit Helps: Achieving the Optimal Distortion with a Few Queries

image.png

  • 论文地址:

    https://www.cs.toronto.edu/~nisarg/papers/value-queries.pdf

  • 机构:多伦多大学

  • 作者:Soroush Ebadian 、 Nisarg Shah

论文摘要:在多智能体系统中,一个基本任务是将智能体与备选方案(例如资源或任务)进行匹配。通常,这是通过获取智能体对备选方案的顺序排名(ordinal rankings)而不是其精确的数值效用(cardinal utilities)来实现的。

虽然这简化了信息获取过程,但信息的不完整性会导致智能体效率低下,这种低效性通过一种称为失真度(distortion)的指标来度量。

本文提出了一种新颖的排序算法,用于单边匹配和单一胜者选举,该算法让每个智能体利用有限数量的 λ 基数查询,实现了渐近最优的扭曲界限,其中 λ 是一个常数。表 1 和表 2 分别提供了本文的结果总结以及在单边匹配和投票方面的对比。

image.png

image.png

本文证明了在单边匹配问题中,使用 λ 次查询可以实现image.png的扭曲度。例如,使用三次查询可以实现 O (n^(1/3)) 的扭曲度,这比之前的 O (log n) 查询结果更好。

文章还将这一结果扩展到了单一胜者选举问题,证明了在任何常数 λ 的情况下,使用 λ 次查询可以实现图片的扭曲度,其中 n 是智能体数量,m 是候选者数量。

论文 3:Revelations: A Decidable Class of POMDPs with Omega-Regular Objectives

image.png

  • 论文地址:https://arxiv.org/pdf/2412.12063

  • 机构:波尔多大学、巴黎大学

  • 作者:Marius Belly、Nathanaël Fijalkow、Hugo Gimbert、Florian Horn、Guillermo Perez、Pierre Vandenhove

论文摘要:部分可观测马尔可夫决策过程(POMDPs)是处理序列决策中一个重要的不确定性模型

本文的主要技术成果是为两类部分可观测马尔可夫决策过程(POMDPs)—— 弱揭示(weakly revealing)和强揭示(strongly revealing)—— 构建了精确算法。重要的是,这些可判定的情况可以简化为对有限信念支持马尔可夫决策过程(finite belief-support Markov decision process)的分析。这为一大类 POMDPs 提供了一种概念上简单且精确的算法。

image.png

文章通过一个揭示版本的经典 Tiger POMDP 问题进行了实验,比较了他们的算法与基于深度强化学习(DRL)的方法。结果显示,他们的算法性能优于 DRL 方法,这表明他们的算法在解决揭示 POMDPs 时更为有效。

文章的研究意义在于为 POMDPs 提供了一种新的可判定性视角,特别是在信息丢失受限的情况下。这种揭示机制不仅为解决 POMDPs 提供了一种新的方法,而且为理解和设计更有效的决策算法提供了理论基础。

AI 对社会影响特别奖

除了三篇杰出论文,AAAI-25 还颁发了一个 AI 对社会影响(AISI,AI for social impact)的研究奖项。论文题目为《DivShift: Exploring Domain-Specific Distribution Shifts in Large-Scale, Volunteer-Collected Biodiversity Datasets》。

image.png

  • 论文链接:https://arxiv.org/pdf/2410.19816

  • 作者:Elena Sierra 、 Lauren E. Gillespie 、 Salim Soltani 、 Moises Exposito-Alonso 、 Teja Kattenborn

  • 机构:斯坦福大学等

这篇文章的核心内容是关于如何利用志愿者收集的生物多样性数据集来训练深度学习模型,以监测气候变化对生物多样性的影响。文章提出了一个名为 DivShift 的框架,并构建了一个名为 DivShift-North American West Coast(DivShift-NAWC)的数据集,用于研究志愿者收集的数据中存在的偏差对模型性能的影响。

参考链接:https://aihub.org/2025/03/01/congratulations-to-the-aaai2025-outstanding-paper-award-winners/

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

5259cf4c29aa674f3420172bb3195436.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

245152349f6fb5eae260ead82694bd58.jpeg

截止到12月25日 ”未来知识库”精选的100部前沿科技趋势报告

  1. 2024 美国众议院人工智能报告:指导原则、前瞻性建议和政策提案

  2. 未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇

  3. Deepmind:AI 加速科学创新发现的黄金时代报告

  4. Continental 大陆集团:2024 未来出行趋势调研报告

  5. 埃森哲:未来生活趋势 2025

  6. 国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景

  7. 哈尔滨工业大学:2024 具身大模型关键技术与应用报告

  8. 爱思唯尔(Elsevier):洞察 2024:科研人员对人工智能的态度报告

  9. 李飞飞、谢赛宁新作「空间智能」 等探索多模态大模型性能

  10. 欧洲议会:2024 欧盟人工智能伦理指南:背景和实施

  11. 通往人工超智能的道路:超级对齐的全面综述

  12. 清华大学:理解世界还是预测未来?世界模型综合综述

  13. Transformer 发明人最新论文:利用基础模型自动搜索人工生命

  14. 兰德公司:新兴技术监督框架发展的现状和未来趋势的技术监督报告

  15. 麦肯锡全球研究院:2024 年全球前沿动态(数据)图表呈现

  16. 兰德公司:新兴技术领域的全球态势综述

  17. 前瞻:2025 年人形机器人产业发展蓝皮书 - 人形机器人量产及商业化关键挑战

  18. 美国国家标准技术研究院(NIST):2024 年度美国制造业统计数据报告(英文版)

  19. 罗戈研究:2024 决策智能:值得关注的决策革命研究报告

  20. 美国航空航天专家委员会:2024 十字路口的 NASA 研究报告

  21. 中国电子技术标准化研究院 2024 扩展现实 XR 产业和标准化研究报告

  22. GenAI 引领全球科技变革关注 AI 应用的持续探索

  23. 国家低空经济融创中心中国上市及新三板挂牌公司低空经济发展报告

  24. 2025 年计算机行业年度策略从 Infra 到 AgentAI 创新的无尽前沿

  25. 多模态可解释人工智能综述:过去、现在与未来

  26. 【斯坦福博士论文】探索自监督学习中对比学习的理论基础

  27. 《机器智能体的混合认知模型》最新 128 页

  28. Open AI 管理 AI 智能体的实践

  29. 未来生命研究院 FLI2024 年 AI 安全指数报告 英文版

  30. 兰德公司 2024 人工智能项目失败的五大根本原因及其成功之道 - 避免 AI 的反模式 英文版

  31. Linux 基金会 2024 去中心化与人工智能报告 英文版

  32. 脑机接口报告脑机接口机器人中的人机交换

  33. 联合国贸发会议 2024 年全球科技创新合作促发展研究报告 英文版

  34. Linux 基金会 2024 年世界开源大会报告塑造人工智能安全和数字公共产品合作的未来 英文版

  35. Gartner2025 年重要战略技术趋势报告 英文版

  36. Fastdata 极数 2024 全球人工智能简史

  37. 中电科:低空航行系统白皮书,拥抱低空经济

  38. 迈向科学发现的生成式人工智能研究报告:进展、机遇与挑战

  39. 哈佛博士论文:构建深度学习的理论基础:实证研究方法

  40. Science 论文:面对 “镜像生物” 的风险

  41. 镜面细菌技术报告:可行性和风险

  42. Neurocomputing 不受限制地超越人类智能的人工智能可能性

  43. 166 页 - 麦肯锡:中国与世界 - 理解变化中的经济联系(完整版)

  44. 未来生命研究所:《2024 人工智能安全指数报告》

  45. 德勤:2025 技术趋势报告 空间计算、人工智能、IT 升级。

  46. 2024 世界智能产业大脑演化趋势报告(12 月上)公开版

  47. 联邦学习中的成员推断攻击与防御:综述

  48. 兰德公司 2024 人工智能和机器学习在太空领域感知中的应用 - 基于两项人工智能案例英文版

  49. Wavestone2024 年法国工业 4.0 晴雨表市场趋势与经验反馈 英文版

  50. Salesforce2024 年制造业趋势报告 - 来自全球 800 多位行业决策者对运营和数字化转型的洞察 英文版

  51. MicrosoftAzure2024 推动应用创新的九大 AI 趋势报告

  52. DeepMind:Gemini,一个高性能多模态模型家族分析报告

  53. 模仿、探索和自我提升:慢思维推理系统的复现报告

  54. 自我发现:大型语言模型自我组成推理结构

  55. 2025 年 101 项将 (或不会) 塑造未来的技术趋势白皮书

  56. 《自然杂志》2024 年 10 大科学人物推荐报告

  57. 量子位智库:2024 年度 AI 十大趋势报告

  58. 华为:鸿蒙 2030 愿景白皮书(更新版)

  59. 电子行业专题报告:2025 年万物 AI 面临的十大待解难题 - 241209

  60. 中国信通院《人工智能发展报告(2024 年)》

  61. 美国安全与新兴技术中心:《追踪美国人工智能并购案》报告

  62. Nature 研究报告:AI 革命的数据正在枯竭,研究人员该怎么办?

  63. NeurIPS 2024 论文:智能体不够聪明怎么办?让它像学徒一样持续学习

  64. LangChain 人工智能代理(AI agent)现状报告

  65. 普华永道:2024 半导体行业状况报告发展趋势与驱动因素

  66. 觅途咨询:2024 全球人形机器人企业画像与能力评估报告

  67. 美国化学会 (ACS):2024 年纳米材料领域新兴趋势与研发进展报告

  68. GWEC:2024 年全球风能报告英文版

  69. Chainalysis:2024 年加密货币地理报告加密货币采用的区域趋势分析

  70. 2024 光刻机产业竞争格局国产替代空间及产业链相关公司分析报告

  71. 世界经济论坛:智能时代,各国对未来制造业和供应链的准备程度

  72. 兰德:《保护人工智能模型权重:防止盗窃和滥用前沿模型》-128 页报告

  73. 经合组织 成年人是否具备在不断变化的世界中生存所需的技能 199 页报告

  74. 医学应用中的可解释人工智能:综述

  75. 复旦最新《智能体模拟社会》综述

  76. 《全球导航卫星系统(GNSS)软件定义无线电:历史、当前发展和标准化工作》最新综述

  77. 《基础研究,致命影响:军事人工智能研究资助》报告

  78. 欧洲科学的未来 - 100 亿地平线研究计划

  79. Nature:欧盟正在形成一项科学大型计划

  80. Nature 欧洲科学的未来

  81. 欧盟科学 —— 下一个 1000 亿欧元

  82. 欧盟向世界呼吁 加入我们价值 1000 亿欧元的研究计划

  83. DARPA 主动社会工程防御计划(ASED)《防止删除信息和捕捉有害行为者(PIRANHA)》技术报告

  84. 兰德《人工智能和机器学习用于太空域感知》72 页报告

  85. 构建通用机器人生成范式:基础设施、扩展性与策略学习(CMU 博士论文)

  86. 世界贸易组织 2024 智能贸易报告 AI 和贸易活动如何双向塑造 英文版

  87. 人工智能行业应用建设发展参考架构

  88. 波士顿咨询 2024 年欧洲天使投资状况报告 英文版

  89. 2024 美国制造业计划战略规划

  90. 【新书】大规模语言模型的隐私与安全

  91. 人工智能行业海外市场寻找 2025 爆款 AI 应用 - 241204

  92. 美国环保署 EPA2024 年版汽车趋势报告英文版

  93. 经济学人智库 EIU2025 年行业展望报告 6 大行业的挑战机遇与发展趋势 英文版

  94. 华为 2024 迈向智能世界系列工业网络全连接研究报告

  95. 华为迈向智能世界白皮书 2024 - 计算

  96. 华为迈向智能世界白皮书 2024 - 全光网络

  97. 华为迈向智能世界白皮书 2024 - 数据通信

  98. 华为迈向智能世界白皮书 2024 - 无线网络

  99. 安全牛 AI 时代深度伪造和合成媒体的安全威胁与对策 2024 版

  100. 2024 人形机器人在工业领域发展机遇行业壁垒及国产替代空间分析报告

  101. 《2024 年 AI 现状分析报告》2-1-3 页.zip

  102. 万物智能演化理论,智能科学基础理论的新探索 - newv2

  103. 世界经济论坛 智能时代的食物和水系统研究报告

  104. 生成式 AI 时代的深伪媒体生成与检测:综述与展望

  105. 科尔尼 2024 年全球人工智能评估 AIA 报告追求更高层次的成熟度规模化和影响力英文版

  106. 计算机行业专题报告 AI 操作系统时代已至 - 241201

  107. Nature 人工智能距离人类水平智能有多近?

  108. Nature 开放的人工智能系统实际上是封闭的

  109. 斯坦福《统计学与信息论》讲义,668 页 pdf

  110. 国家信息中心华为城市一张网 2.0 研究报告 2024 年

  111. 国际清算银行 2024 生成式 AI 的崛起对美国劳动力市场的影响分析报告 渗透度替代效应及对不平等状况英文版

  112. 大模型如何判决?从生成到判决:大型语言模型作为裁判的机遇与挑战

  113. 毕马威 2024 年全球半导体行业展望报告

  114. MR 行业专题报告 AIMR 空间计算定义新一代超级个人终端 - 241119

  115. DeepMind 36 页 AI4Science 报告:全球实验室被「AI 科学家」指数级接管

  116. 《人工智能和机器学习对网络安全的影响》最新 273 页

  117. 2024 量子计算与人工智能无声的革命报告

  118. 未来今日研究所:2024 技术趋势报告 - 广义计算篇

  119. 科睿唯安中国科学院 2024 研究前沿热度指数报告

  120. 文本到图像合成:十年回顾

  121. 《以人为中心的大型语言模型(LLM)研究综述》

  122. 经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版

  123. 波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告 英文版

  124. 理解世界还是预测未来?世界模型的综合综述

  125. GoogleCloudCSA2024AI 与安全状况调研报告 英文版

  126. 英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施

  127. 花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告

  128. 国际可再生能源署 IRENA2024 年全球气候行动报告

  129. Cell: 物理学和化学 、人工智能知识领域的融合

  130. 智次方 2025 中国 5G 产业全景图谱报告

上下滑动查看更多

### 周志华《机器学习》第9.4节内容解析 在周志华所著的《机器学习》一书中,第9.4节主要讨论了聚类性能度量的方法[^1]。这一部分深入探讨了如何评价不同聚类算法的效果以及它们产生的簇的质量。 #### 聚类有效性指标 为了衡量聚类结果的好坏,通常采用内部指标和外部指标两种方式: - **内部指标**:仅依赖于数据本身的信息来评估聚类效果。常见的有紧致性和分离性两个方面。紧致性指的是同一簇内对象间的相似度;而分离性则表示不同簇之间差异的程度。例如SSE(Sum of Squared Errors),即平方误差之和可以作为衡量标准之一[^2]。 - **外部指标**:当存在真实标签时可用来比较预测标签与实际标签的一致性情况。常用的包括纯度(Purity),NMI (Normalized Mutual Information, 归一化互信息), ARI(Adjusted Rand Index,调整兰德指数)等措施[^3]。 对于具体的计算公式,在处理离散型变量的情况下,ARI定义如下所示: ```python from sklearn.metrics import adjusted_rand_score as ari def calculate_ari(true_labels, predicted_labels): score = ari(true_labels, predicted_labels) return score ``` 此外还介绍了轮廓系数(Silhouette Coefficient),这是一种综合考虑样本与其所在簇内的其他成员的距离平均值a(i)(intra-cluster distance average),以及该样本到最近邻近簇的所有成员距离均值b(i)(nearest-cluster distance average)。其具体表达式为: \[ s(i)=\frac{b(i)-a(i)}{\max \left(a(i), b(i)\right)}, i=1,2,\cdots,n \] 其中\(s(i)\)取值范围[-1, 1],越接近1说明越好分群。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值