摘要
量子计算作为下一代信息技术的核心驱动力之一,正逐步从实验室走向产业化,成为全球科技竞争的新高地。其颠覆性的计算能力有望在金融、医药、材料科学等领域带来革命性突破。
近年来,全球主要经济体纷纷将量子计算纳入国家战略,并通过政策支持、资本投入和技术创新加速布局。
本文深入分析了量子计算的投资前景、关键技术、应用场景、风险挑战,为关注量子计算的读者提供决策与参考。
一、中国领跑全球
2023年,全球量子计算市场规模达到47亿美元,预计到2025年将增长至61亿美元,年均增速约为15%。此外,相关数据显示,2024年至2029年,全球量子计算市场的复合年增长率预计为37.45%,显示出该领域强劲的增长潜力。这一增长主要得益于量子计算技术的突破及其在金融、医药和材料科学等领域的初步商业化应用。
其中,中国市场的增长尤为显著。根据赛迪顾问的预测,2025年中国量子计算市场规模将达到115.6亿元人民币,年均增速超过30%,成为全球增长最快的市场之一。
此外,尽管欧美企业如IBM、谷歌等仍占据技术主导地位,但中国在超导量子计算(如“祖冲之三号”和“本源悟空”)和光量子路线(如“九章三号”)方面已跻身国际第一梯队,展现出显著的技术竞争力。
除技术突破加速和应用曙光初现之外,政策支持也是推动量子计算发展的重要动力。与此同时,全球政府机构对量子计算的兴趣日益浓厚,其中14个(13个国家加上欧盟)已经宣布了横跨几年的量子计划,并将为量子计算研究带来数十亿美元的资金支持。
例如,欧盟启动了“量子旗舰计划”,目标是在2030年建成泛欧量子通信网络。美国作为全球量子计算领域的领先者,政府和企业投入大量资金支持量子计算的研究和开发,推动技术进步和商业化应用。
回到中国,中国政府已将量子计算纳入核心科技发展规划,政策支持力度持续加码。2024年政府工作报告首次明确提及量子技术,并出台《“十四五”数字经济发展规划》《元宇宙产业创新发展三年行动计划》等文件,推动量子计算与通信、人工智能等领域的深度融合。
地方层面,安徽、北京、广东等16个省市在2025年政府工作报告中提出量子科技专项支持。例如,安徽依托本源量子打造自主超导量子计算机产业链,广东则通过建设量子科学中心吸引高端人才。
最后,随着量子计算技术的不断突破和创新,资本市场对量子计算行业的关注度和投资热情也在逐渐升温,推动了相关企业的融资和发展。在中国市场中,科技巨头(如华为)和初创企业(如本源量子、九章量子)形成双轮驱动。数据显示,2023年全球量子计算企业融资额超20亿美元,中国占比约30%。
二、三大核心“要素”
量子计算发展至今,已逐渐形成清晰的发展路径,其中,有三个非常重要的“要素”是推动和发展量子计算的核心。
首先,是量子比特。量子计算的核心在于量子比特(Qubit),其物理实现方式直接决定了量子计算机的性能、可扩展性和应用潜力。
目前,主流量子比特技术路线包括超导、离子阱、光量子和中性原子等,每种路线在技术成熟度、可扩展性、操作精度和商业化前景等方面各具优劣。
超导量子比特:商业化进程领先
超导量子比特利用超导材料在极低温下(接近绝对零度)的量子特性,通过约瑟夫森结(Josephson Junction)实现量子态的操控。
它的优势在于,超导量子比特基于成熟的半导体制造工艺,易于集成和扩展。其次,门操作时间在纳秒级别,适合快速计算任务。目前,超导路线在商业化进程中处于领先地位。
相关数据显示,2023年,全球超导量子计算市场规模已达28亿美元,占整个量子计算硬件市场的62%。IBM、谷歌、英特尔等科技巨头以及中国的本源量子等企业均采用这一路线。
尽管超导量子比特在商业化的可能性上有较强的优势,但这条赛道也面临着严峻挑战:由于环境限制,似的维持量子态所需的接近绝对零度 (10mk)环境,使得制冷系统成本占到整机成本的70%以上。此外,量子比特的退相干时间普遍在百微秒量级,这给量子纠错带来了巨大压力。如IBM研究院院长达里奥·吉尔所言:“我们正在量子比特数量和系统稳定性之间走钢丝。”
离子阱量子比特:高精度与长相干时间
如果说超导路线是工业化生产的代表,那么离子阱技术则更像是精雕细琢的实验室艺术品。
离子阱量子比特利用电磁场捕获带电原子(离子),并通过激光操控其量子态。这种技术路线展现出惊人的精确度。此外,其核心竞争力在于其长相干时间——单个量子比特的相干时间可达数秒,这为复杂量子算法的实施提供了时间窗口。
以IonQ公司为例,其最新一代量子计算机的量子门保真度已达到 99.97%,这种精度在需要高可靠性的量子化学模拟等领域具有独特优势。
与超导路线类似,离子阱的扩展性是其“瓶颈”——当量子比特数量超过50个时,激光控制系统的复杂度呈指数级上升。这导致目前商用的离子阱量子计算机大多停留在32量子比特水平。
不过,模块化设计的突破可能改变游戏规则。例如,美国初创公司Quantinuum开发的“量子计算单元”堆叠架构,为突破百量子比特大关提供了新思路。
光量子比特:长距离通信与高稳定性
除了超导和离子阱外,光量子路线正开辟出独特的生态位——光量子比特利用光子的偏振或相位编码量子信息,通过线性光学元件实现量子态的操控。
光量子技术的最大魅力在于环境适应性——无需复杂的低温或真空系统,这显著降低了运维成本。光量子路线的代表企业包括中国的九章量子、图灵量子和美国的PsiQuantum。
尤其是中国的“九章系列”光量子计算机已在特定任务上实现了“量子优越性”(2020年)。例如,“九章三号”在处理高斯玻色样本的速度比九章二号提升一百万倍,刷新光量子信息技术世界纪录,求解特定问题比超算快一亿亿倍。九章三号在百万分之一秒所处理的样本复杂度,需要超级计算机 “前沿” 耗费超过二百亿年的时间。
然而,由于光子的特殊性——光子间难以产生强相互作用,导致多比特纠缠效率低下,这条路线也有诸多难题需要攻克。当前最先进的光量子系统仅能操控200多个光子(如“九章三号”),低于超导系统的量子比特数量。
不过,集成光子学的发展正在打破这一瓶颈,硅基光量子芯片的进展让业界看到了规模化集成的曙光——硅基光量子芯片技术发展迅速,国内外研究团队已取得了诸多成果。如北京大学研究团队实现了8量子比特簇态光量子计算芯片,可通过编程调控实现不同结构的量子图态和量子簇态,量子纠缠态保真度约达到80%。
中性原子量子比特:后发者的弯道超车
在量子计算竞技中,中性原子技术堪称最具想象空间的"黑马"。通过激光镊子阵列捕获中性原子,利用里德堡态间的强相互作用实现量子操控,这种技术兼具超导路线的可扩展性和离子阱的精确操控特性。
中性原子路线的突破性在于其三维架构潜力——量子比特可以空间排列成任意形状,这为特定计算任务提供了硬件层面的优化可能。如法国公司 Pasqal 近期发布的324位量子比特系统,在量子优化计算任务中展现出惊人性能,其解决问题的速度比经典算法快1000倍以上。
不过,这条路线仍面临工程化难题:维持大规模原子阵列的稳定性需要极其精密的激光控制系统,这使得当前的中性原子量子计算机体积堪比整个实验室。不过,随着量子点阵列技术的进步,设备小型化进程正在加速。
简单总结一下,四大技术路线主要是优先追求规模化(超导),专注精确度(离子阱),侧重环境适应性(光量子),探索架构创新(中性原子)。但其竞争并非零和博弈,还包括融合创新——正如经典计算机从电子管到晶体管的演进,量子计算也可能经历技术路线的迭代与融合,例如,业内设想将光子技术和超导技术结合使用——利用光子技术进行量子比特的传输和纠缠分发,利用超导技术实现量子比特的存储和操作。此外,结合后的技术还可用于量子门的实现和量子算法的执行,提高量子计算的效率和准确性。这种多样性恰是量子计算生命力的体现。
如前所述,量子计算作为量子力学与信息科学相结合的前沿领域,正引领着“第二次量子革命”。然而,量子系统的脆弱性使其易受环境噪声影响,导致量子信息丢失和计算错误,这成为制约量子计算实用化的关键瓶颈。量子纠错技术应运而生。
其中,量子纠错码是量子纠错的核心技术,其基本思想是通过使用多个物理量子比特编码一个逻辑量子比特,增加信息编码空间的冗余度,从而能够检测和纠正错误。
常见的量子纠错码包括表面码、重复码、玻色码等。表面码具有较高的错误阈值和较好的可扩展性,适用于大规模量子计算;重复码结构简单,易于实现,适用于初步的量子纠错实验;玻色码则在编码效率和错误抑制能力方面表现出独特优势。
量子纠错的过程通常包括错误检测和错误纠正两个阶段。在错误检测阶段,通过量子电路中的辅助量子比特和测量操作,获取量子系统的错误综合征信息,判断是否发生错误以及错误的位置;在错误纠正阶段,根据错误综合征信息,应用相应的量子门操作对错误进行纠正,恢复量子信息的原始状态。
2023年,谷歌量子AI团队在超导量子计算平台上实现了表面码量子纠错,展示了逻辑量子比特在增加物理量子比特数量时的性能提升,为实现容错量子计算迈出了重要一步。同年,我国南方科技大学的研究团队采用实时重复的量子纠错方案,延长了量子信息的存储时间,在国际上首次超越盈亏平衡点,证明了量子纠错的实用价值。
此外,就在今年 (2025 年),AWS 团队开发了 Ocelot 芯片,利用猫量子比特构建可扩展且硬件高效的量子纠错架构。该架构通过采用重复码纠正相位翻转错误,并利用高度噪声偏置的受控非门实现猫量子比特的比特翻转保护和相位翻转错误检测,有望将量子纠错成本降低九成。
尽管目前量子纠错技术仍面临诸多挑战,但随着全球科研团队的不断努力和投入,技术突破不断涌现,为实现大规模、实用化的量子计算奠定了坚实基础。未来,随着量子纠错技术的进一步发展和完善,其将在量子计算、通信、传感等多个领域发挥重要作用,推动人类社会进入全新的量子信息时代。
最后,我们来看量子算法。量子计算的核心优势在于其能够利用量子叠加、量子纠缠等特性进行并行计算,从而在某些特定问题上大幅提高计算效率。而量子算法正是通过巧妙地设计和利用这些量子特性,使得量子计算机能够在处理这些问题时展现出传统计算机无法比拟的优势。
例如,在科学研究领域,量子模拟算法能够高效地模拟量子多体系统的行为,帮助科学家深入研究材料的物理性质、化学反应的机理等问题。在金融领域,量子优化算法可以用于投资组合优化、风险评估等复杂问题的求解,提高金融决策的效率和准确性。此外,量子机器学习算法也在图像识别、自然语言处理等领域展现出良好的应用前景,为人工智能的发展提供了新的思路和方法。
再例如,肖尔(Shor) 算法通过将大整数分解问题转化为量子傅里叶变换和周期查找问题,利用量子叠加和并行性,在量子计算机上能够在多项式时间内解决大整数分解问题,而在传统计算机上这需要指数级时间,这使得量子计算在密码学等领域具有巨大的潜在应用价值。
为了实现更高效的量子算法,研究人员需要不断追求更高性能、更稳定的量子比特和更精确的量子门操作。
三、应用场景展望
在当今科技飞速发展的时代,量子计算正以其独特的优势,为众多领域带来前所未有的机遇。
金融领域
金融行业每天都在处理海量的数据和复杂的计算问题,而量子计算的出现,为金融机构提供了全新的解决方案。在投资组合优化方面,量子计算能够快速处理大规模数据集,通过复杂的数学模型,找到最优的投资组合配置,帮助投资者在风险与收益之间取得最佳平衡。
例如,花旗银行与Classiq合作,基于Amazon Braket平台研究用于投资组合优化的量子解决方案,构建了性能更优的投资组合。在风险管理领域,量子计算可以更准确地预测市场波动和评估信用风险,为金融机构提供更全面的风险管理方案。
德勤(Deloitte)探索量子计算在欺诈检测、先进智能工厂设计方面的潜在益处,应对对公开密钥加密技术造成的破坏风险。此外,量子计算在高频交易策略优化中也发挥着重要作用。它能够更快地响应市场变化,优化交易策略,提高交易效率。JPMorgan与量子公司QC Ware合作,利用量子机器学习训练“深度套期保值”模型,降低投资组合风险。
化学与材料科学
化学和材料科学领域,量子计算为新材料的研发带来了革命性的变化。在新材料发现方面,量子计算可以模拟和分析各种材料的性质,帮助科学家设计出更强、更轻、更高效的材料。
巴斯夫(BASF)与量子计算及半导体公司SEEQC合作,探索量子计算在新型工业催化剂研发方面的应用,模拟并优化相关化学品的新型催化剂。在电池材料研发中,量子计算能够预测电池材料的性能,优化电极材料和电解质,提高电池的能量密度和稳定性。
微软与美国能源部太平洋西北国家实验室合作利用量子计算将新型电池材料筛选到少数几种,实验表明筛选时间可大幅减少。
医疗保健与药物研发
医疗保健领域,量子计算在药物研发和医学影像分析等方面展现出巨大潜力。在药物研发过程中,量子计算能够模拟分子和化学反应,加速药物筛选和设计过程。IBM Quantum与合作伙伴在新药研发中使用量子模拟分析分子和化学反应。
中国科学院与制药企业合作,利用量子计算模拟药物分子与靶点的相互作用,显著缩短了研发周期。在医学影像分析方面,Roche与量子软件及服务公司QC Ware合作,探索量子机器学习算法在糖尿病视网膜病变检测中的应用,寻求在医学影像分析和诊断领域开辟新途径。
交通与物流
交通和物流行业,量子计算为优化运输路线和供应链管理提供了强大的工具。在路线优化方面,量子计算能够分析和优化复杂的交通网络,提出更有效的交通管理策略,减少拥堵,提高交通效率。
Volkswagen使用量子计算解决交通流量优化问题,提高城市交通效率。IonQ与德国基础科学研究中心将量子计算应用于航班登机口优化,在缩短旅客转机时间、飞机停靠时间的同时,提高了登机口服务效率。
在供应链管理中,量子计算可以解决复杂的物流和资源分配问题,优化供应链中的运输路线、库存管理和生产计划,降低成本并提高效率。UPS 和 D-Wave 合作,探索量子算法在物流和交付路线优化中的应用。
人工智能与机器学习
人工智能和机器学习领域,量子计算为算法训练和模型优化带来了新的突破。量子计算可以极大地加速机器学习算法的训练和执行,提高算法的准确性和效率。IBM、Google 等多家公司在量子机器学习领域进行研究,探索量子算法提高数据处理效率和模型训练速度。
量子计算能够处理更大的数据集,优化机器学习模型,从而在图像识别、自然语言处理、预测分析等领域实现更先进的 AI 应用。
Zapata 和 Insilico Medicine 等合作利用量子人工智能开发新型 KRAS 抑制剂分子,该分子比经典模型生成的分子具有更高的结合亲和力。
四、相关厂商的进展
整体而言,全球量子计算厂商在硬件技术、量子比特数量、计算性能和应用场景都取得了不错的进展。以下选取一些知名企业进行介绍。
IBM
2016年,IBM推出了世界上第一个基于5位超导量子计算机的量子云平台——IBM Quantum Experience,标志着量子计算从实验室走向公众,为全球科研人员、开发者及爱好者提供了一个可直接与量子处理器交互的平台。
2019年1月,在国际消费电子展上,IBM正式发布了Q System One。IBM通过Quantum Experience和Q System One构建了一个开放的量子计算生态系统,吸引了众多企业、科研机构和开发者的参与,促进了量子计算技术与各行业的深度融合。例如,IBM与摩根大通银行、日本三菱化学等企业合作,共同探索量子计算在金融、化学等领域的应用,为解决实际问题提供了新的思路和方法。
2019 年,谷歌首次在量子优越性领域取得重大突破。其研发的 Sycamore 量子处理器,包含54个量子比特(实际使用53个),在随机电路采样(RCS)任务中,仅用200秒便完成了当时最强大的超级计算机需要约1万年才能完成的计算任务。这一成就标志着谷歌在量子计算领域迈出了关键一步,展示了量子计算机在特定任务上的巨大潜力。
然而,这一成果也引发了业界的质疑。IBM 研究人员指出,经典超级计算机实际上可以在几天内完成类似任务。尽管如此,谷歌的这一突破仍被视为量子计算发展史上的重要里程碑,为后续的研究和开发奠定了基础。
2024年12月10日,谷歌公布了其最新的量子芯片Willow在RCS基准测试中的惊人成果Willow在不到5分钟内完成了传统超级计算机需要10^25年才能完成的计算任务。这一成就不仅再次证明了量子计算机在特定任务上的巨大优势,还展示了Willow芯片在处理复杂计算时的强大能力。
Willow芯片的另一个重要突破是实现了表面码纠错的历史性进展。谷歌在包含105个量子比特的芯片中实现了码距为7(d=7) 的表面码纠错,同时在 72 量子比特芯片中实现了码距为5(d=5) 的表面码纠错及其实时解码。纠错后的逻辑量子比特错误率低于所有参与纠错的物理量子比特,这解决了量子纠错领域近30年来一直在研究的关键挑战。
谷歌量子AI负责人 Hartmut Neven 表示,Willow 是构建一台能够在药物发现、聚变能源、电池设计等领域具有实际应用的实用量子计算机旅程中的重要一步。尽管实用化量子计算机的完全实现仍需5到10年时间,但谷歌的进展为未来计算技术的发展带来了无限可能。
Rigetti Computing
Rigetti Computing由物理学家 Chad Rigetti于2013年创立(创始人目前貌似退休离开了公司),总部位于美国加利福尼亚州伯克利市。Chad Rigetti曾在 IBM 从事量子计算机研究,并在著名量子科学家 Michel Devoret 的指导下学习。
2016 年,Rigetti Computing开发了首款三量子比特芯片。2023 年,Rigetti Computing推出的84量子比特处理器展示了其在可扩展性方面的重大进展。Rigetti Computing 拥有名为 Fab-1 的内部制造设施,专门用于量子芯片的快速原型设计和生产。这使得公司能够完全控制量子芯片的设计、制造和测试流程,确保高质量和高性能。
IonQ
IonQ 由马里兰大学和杜克大学教授 Christopher Monroe 和 Jungsang Kim 于 2015 年共同创立。Monroe在马里兰大学开发了离子阱技术,而Kim在杜克大学开发了相关技术,这些技术为 IonQ 的离子阱量子计算机奠定了坚实基础。
IonQ 最近推出 32量子比特量子计算机是世界上最强大的量子计算机之一,其双量子比特门的保真度高达 99.9%,预期量子体积为400万,是所有可用量子硬件中最大的量子体积之一。IonQ的云服务目前与 Amazon Braket、Microsoft Azure Quantum 等平台集成,提供跨平台的量子计算体验。
Microsoft
Microsoft 的量子计算机基于拓扑量子比特技术(前面没细说,但这个路线其实也很有意思,值得关注看看),这种技术利用拓扑超导阶段及其连续的 Majorana 零模式来创建量子比特。拓扑量子比特比传统量子比特更稳定,能够显著减少量子计算中的错误率。
Microsoft的Majorana1是世界上第一个由拓扑核心提供支持的量子芯片,它使用名为 topoconductor的突破性材料制造,可实现一种新的物质态,有望将开发真正具有实用意义的量子计算机的时间线缩短到数年,而不是数十年。
这种拓扑方法将允许创建可以在单个芯片上缩放到一百万个量子比特的量子系统,从而能够解决将当今世界的计算能力全部合并也无法解决的问题。
D-Wave Systems
D-Wave Systems成立于1999年,总部位于加拿大不列颠哥伦比亚省温哥华市。该公司由 Geordie Rose、Robert Henderson和Alexandre Zagoskin共同创立。
最初,D-Wave的目标是开发量子比特,使用“d波超导体”材料,但后来转向了量子退火技术的研发。这种技术利用超导量子比特和量子隧穿效应来解决复杂的优化问题。
量子退火先从权重相同的所有可能状态的物理系统的量子叠加态开始运行,按照含时薛定谔方程开始量子演化。当横向场最终被关闭的时候,预期系统就已得到原优化问题的解。
这种技术使得 D-Wave 的量子计算机在解决组合优化问题时具有显著优势(但感觉D-wave的发展好像有点偏离“主流”了)。
Xanadu
Xanadu成立于2016年,总部位于加拿大安大略省多伦多市。公司由量子物理学专家Christian Weedbrook创立。Xanadu 的量子计算机基于光量子技术。
2022年,Xanadu 推出了名为Borealis的光量子计算机,能够通过测量多达216个纠缠光子的行为来进行计算,在36微秒内完成高斯玻色取样任务,而最好的超级计算机至少需要 9000年才能完成。
2025年,Xanadu开发出全球首台可扩展光量子计算机原型Aurora。该计算机采用模块化设计,由四个服务器机架组成,包含84个压缩器和12个物理量子位,可通过光纤电缆连接数千个单元,创建具有巨大处理能力的大型量子计算机。Aurora的核心由35个光子芯片构成,分为三大模块,通过相位和偏振稳定的光纤互联,形成可无限扩展的机架式系统。
国内我们就以中科创星投资的几家企业为例。
九章量子
九章量子是一家在光量子计算领域具有显著科研实力和发展潜力的企业。公司成立于2022年11,其研发团队来自于中国科学技术大学 “九章” 光量子计算原型机团队,首席科学家是国家杰出青年科学基金获得者陆朝阳教授,团队成员在光量子计算机方面取得过诸多卓越成果。
本源量子
本源量子成立于2017年9月,其团队技术起源于中科院量子信息重点实验室。公司聚焦量子计算产业生态建设,打造自主可控工程化量子计算机。本源量子主要采用超导量子计算技术路线。2024年,本源量子推出国内首台超导量子计算机“悟空”。此外,本源量子围绕量子芯片、量子计算测控一体机、量子操作系统、量子软件、量子计算云平台和量子计算科普教育等核心业务,全栈研制开发量子计算。
中科酷原
中科酷原成立于2020年6月。2024年,中科酷原发布了100+比特原子量子计算机“汉原1号”,其单比特操控保真度达到0.99977,量子比特相干时间为132±9ms,足以支持10000个以上的NOT门操控。
瀚海量子
瀚海量子成立于2021年5月,公司专注于量子力学领域的第一性原理电子结构计算和分子动力学模拟软件研发,开发了HONPAS、PWDFT和KSSOLV等高性能计算软件。这些软件具备全球最大计算规模(最高支持250万原子)和最高效率(支持GPU-CUDA加速,全面适配国产超算),在同类软件中处于领先地位。
相干科技
相干科技成立于2023年10月,是一家专注于超导量子计算技术解决方案、量子计算服务提供的前沿科技企业。公司致力于为量子计算机研发与生产,提供量子计算芯片及封装、极低温量子测控线路解决方案、室温测控电子学解决方案、测控软件等产品和服务。面向量子计算应用企业提供量子算力平台和应用软件生态支持。
五、风险与挑战
量子计算技术目前仍处于早期发展阶段,面临着诸多瓶颈,这些瓶颈构成了量子计算领风险。
资料来源:光子盒
技术方面,首先是量子比特的稳定性问题。前面说过,量子计算的基本单元是量子比特,其稳定性直接影响量子计算的性能和可靠性。然而,量子比特对环境噪声和误差非常敏感,容易受到退相干效应和噪声干扰的影响。此外,随着量子比特数量的增加,稳定性问题会更加突出,成为量子计算机升级的一个障碍。
其次,是量子计算机的可扩展性问题。构建大规模的量子计算机需要大量的量子比特,而现有技术在扩展量子比特数量方面仍面临挑战。例如,超导量子计算路线虽然在比特数量和逻辑门保真度等指标上提升迅速,但在扩展到大规模系统时仍需克服诸多技术难题。同时,量子计算机的冷却和控制系统也需要极高的精度和稳定性,这进一步增加了技术实现的复杂性和成本。
再次,是量子纠错问题。目前,量子纠错技术仍处于发展阶段。量子纠错代码的开发和应用需要复杂的编码和解码过程,这不仅增加了计算的复杂性,还对量子比特的稳定性和操作精度提出了更高的要求。此外,量子纠错技术的有效实施还需要大量的量子比特资源,这在当前量子比特数量有限的情况下是一个重要的制约因素。
最后,量子计算的强大计算能力对现代密码技术构成了潜在威胁。例如,量子计算机可以利用量子力学原理快速破解传统的公钥加密算法(如RSA算法),从而导致密码学系统的崩溃。此外,量子计算还可能颠覆现有的互联网基础设施,增加企业数字化成本,拉大数字鸿沟,并对区块链技术和生态资源造成破坏。
技术问题也会传导到应用端。由于量子计算技术仍处于早期发展阶段,技术成熟度较低,尽管科学家们在量子计算领域取得了显著进展,但要实现大规模商业化应用仍需克服诸多技术瓶颈。
根据市场研究机构的预测,量子计算市场在未来几年将保持快速增长,但目前市场规模仍然较小。2023年全球量子计算市场规模约为47亿美元,预计到2035年有望达到8117亿美元。然而,这种增长预期主要基于技术突破和应用拓展的假设,实际商业化进程可能会受到技术进展缓慢、市场需求不确定等因素的影响,从而延长投资回报周期。
再者,市场对量子计算的接受度和需求也需要时间来培养和验证,这进一步增加了商业化应用的时间成本和投资风险。
更进一步,从更为宏观的视角看,量子计算还面临全球竞争的风险。全球量子计算的竞争格局呈现出多极化的特点,美国、中国、欧洲等主要科技力量在这一领域展开了激烈的竞争。
六、相关思考
回到一家投资机构的视角,我们认为,量子计算颇具发展前景,但考虑到上述风险,因而在投资过程中仍需关注以下几点:
一是关注拥有核心技术的企业。核心技术是量子计算公司的基石。拥有核心技术和专利的公司,往往具有更高的市场价值和盈利能力。核心技术能够为企业带来持续的创新成果和产品升级,满足市场需求,提高市场份额。专利运营则可以为企业带来额外收入,增强企业的盈利能力。这些因素共同作用,提高了企业的投资回报率,为投资者带来丰厚的收益。
其次,由于量子计算区别于传统计算。因此,需要关注量子计算硬件、软件、算法、应用等全产业链投资机会。例如,硬件是量子计算的基础,其发展直接决定了量子计算的能力和应用场景。再例如,软件在量子计算中扮演着连接硬件与应用的桥梁角色,其发展对于推动量子计算的实用化和普及具有重要意义。量子计算软件主要包括量子操作系统、量子编程框架和量子编译器等类型。包括算法和应用,投资者应全面审视各环节的特点与需求,精准定位投资方向,以实现投资收益的最大化。
总之,量子计算是长期投资赛道,需要耐心和信心。即便量子计算技术在实验室环境中取得了理想的成果,从技术成熟过渡到应用成熟也并非一蹴而就。
在这种情况下,投资者需要具备足够的耐心,坚定地支持量子计算企业的发展,共同度过技术发展和市场培育的艰难时期,等待量子计算技术在商业应用中实现其巨大的潜在价值。
ps:对量子计算的原理或是技术细节感兴趣的客官,可以查看我们之前发布的相关文章:
中科创星作为“硬科技”理念的缔造者,成立的初心便是“探索科技成果转化道路”,自2013年公司成立便聚焦科研院所和高校,服务科学家创业,助力优秀科技成果转化为现实生产力。
中科创星密切关注量子计算领域前沿技术。目前,中科创星已布局多家量子计算产业链企业。这些企业在关键技术研发、核心部件生产等方面持续发力,不断突破技术瓶颈,同时积极推动量子技术在多个领域的应用创新,为量子技术的商业化落地和产业升级注入了强大动力。
未来,中科创星将加大在量子科技领域的投资力度,助力科研机构和企业在基础研究、工程技术研发、产业发展等方面抢占量子科技国际竞争制高点,构筑发展新优势。
中科创星
Portfolio
(*以下仅为部分被投企业)
推荐阅读
Recommend