随着生成式人工智能的飞速进步和对大模型需求的急剧膨胀,处理和分析海量数据所需的强大算力变得至关重要。根据国家数据局发布:截止2023年底,国内算力中心总体平均上架率达66%。我国算力总规模超230EFLOPS,位居全球第二。
不过,大量算力被制造出来,国内各行各业又存在着多元丰富的应用场景,那么问题来了:这些算力资源是否已充分利用起来了呢?
▶ 国内近50%左右算力中心利用率不高
根据《2021—2022全球计算力指数评估报告》,算力指数每提高一个点,就会给数字经济带来3.5‰的贡献,但根据推算,想要带来显著的经济效益,算力中心的理想利用率目标至少为80%才能达成。我国诸多城市在不考虑实际应用场景的情况下,盲目建设,造成算力中心空置率极高。
IDC今年调研称,以企业为主要用户的通用算力中心利用率,目前仅为10%-15%,这表明小型或企业级的算力中心利用率相对较低,而国家级/大厂级的智算中心往往拥有较高的资源利用率。例如,西安昇腾智能科技有限公司的人工智算中心算力使用率高达98.5%,这是一个非常高的水平。国家超级计算深圳中心和国家超级计算济南中心的历史数据也显示了它们在资源利用率方面的优异表现。不过这些在我国算力中心只占少数。数据表明,国内算力规模在世界范围内看似十分“能打”,实则虚假繁华。大多数算力中心在“建设、应用、生态”三个维度上仍面临着“规模优先,架构单一;重视硬件发展疏忽软件建设,技术与场景需求割裂;兼容性与协同性不足”等问题,造成了我国近乎50%的算力中心算力分布管理不均,利用率难以跟上。
▶ 算力孤岛,造就算力调度、交易、安全难题
目前我国各地众多算力中心,大多处于分散状态,各中心通常是自治运营,各自对外提供算力服务,形成了一个个算力孤岛。各算力中心缺少相互间的任务协同机制和资源共享机制,跨广域数据交互效率也不高,难以实现算力资源的充分利用和协同共享,也无法协同形成资源聚合效应。长此以往,算力资源分散在不同地区和运营方,调度、交易、管理十分不便,无法实现高效连接和统一运营,就形成了以下难题:
-
算力异构化程度高,统一管理调度困难。
由于算力资源的多样性和异构性,不同类型和规模的计算资源需要不同的管理和调度策略,这增加了算力资源管理的复杂性。
-
算力交易过程中的信任问题。
算力资源归属于不同的运营方,建立一个可靠的算力交易平台,确保交易的公平性和安全性,是算力产业发展需要解决的问题。
-
算力使用过程中的数据信息安全问题。
算力资源在从申请、使用再到结算清退,过程中至少跨越使用方和供给方的边界,一旦有风险,不仅导致算力使用方出现漏洞,也会引发算力供给方的隐患,从而给整个算网资源体系带来风险。
▶ 骋风而来一体化算力应用解决方案
骋风而来算力互联互通调度交易平台,是杭州骋风而来数字科技有限公司基于自持算力和接入国内外三方算力,深挖算力产业链痛点需求打造的一款平台级解决方案。面向政企高校等算力应用场景,提供多元异构算力资源接入、算力调度、算力服务和算力运营等关键能力,解决用户面临的算力资源分散、算力供需不匹配、缺乏统一运营规范等痛点问题,实现算力资源跨域共享和高效协同,提高算力利用率,为国内算力中心释放算力价值。
-
在算力接入方面:骋风而来支持多元异构算力聚合,集群化资源调配和优化,为异构算力资源协同及跨域调度奠定基础;
-
在算力调度方面:通过算力感知、动态分配和智能调度等技术手段,实现算力供需最优匹配,进一步提升算力资源利用率,降低计算成本;
-
在算力服务方面:骋风而来提供多种算力服务,满足通用计算、智能计算、专用计算等场景下的不同算力需求;
-
在算力运营方面:依托骋风而来算力平台,支持对多厂家、多平台算力资源的统一监控、运维和运营,为用户提供稳定可靠、即取即用的算力服务。
随着时间的推移,全球AI浪潮终将会从狂热回归理性,各地算力中心的建设也会趋缓,充分利用好现有的计算资源,让AI产生价值回报,将会成为更重要、更迫切的任务。骋风而来一体化算力应用解决方案,打通各地算力中心资源,整合多元算力,构建多种算力类型协同发展的格局。未来骋风而来将与各位客户和伙伴一起,共建繁荣算力生态,为万千行业带来高效普惠算力服务,促进行业数智化转型。