近期,马斯克发布了一段视频,这是他去年8月在西点军校发表的演讲。演讲中,他认为无人机和人工智能(AI)将主导未来战争,并以俄乌冲突为例予以说明。
一、算力=战斗力
当前,全球主要军事大国都普遍认识到,未来军事发展的重要方向是信息化与智能化,即军事装备、作战方法与人工智能相结合。不过,任何一方想要实现智能化战略升级,都离不开雄厚的算力支持。
在现代战争中,算力的消耗主要与以下几个场景相关:
人工智能能够为前线战场无人机、无人战车、哨卡机器人、无人舰艇等智能装备提供海量的数据支撑,以支持其能够输送物资、自主侦查,分析打击目标、自主决策是否发动打击等超复杂和高风险任务。
另外,现代战争中作战场景千变万化,参战过程中作战人员面临着战争迷雾、海量信息、强干扰对抗等难题,这就使得战争指挥系统必须拥有更智能和更强大的分析决策能力,这同样离不开算力的支撑。
算力如同当初的火药一样,是武器智能化升级的关键战略物资。因此,近年来全球各国愈发重视军事领域的算力研发工作:
-
美国国防部正在量子计算等领域开展多个新项目,推动量子计算机的安全性与计算性能的大幅提高,其所瞄准的就是今早将下一代超级算力运用到美军攻防能力建设上。
-
法国将2024年~2030年的军费预算急剧提升到4000亿欧元,专门增加了对人工智能、量子计算机等领域的投入。
-
英国国防部也是超级计算机的主要投资者之一,同时还致力于开发自主军用机器人系统和新一代智能蜂群技术。
-
日本将算力服务列为涉及国家安全的特定重要物资,即向粮食、能源一样的重要战略物资。
二、军事战中的算力消耗
了解了算力在军事上的重要性后,相信大家更感兴趣的是,一场AI参与的智能化战争,到底需要耗费多少算力呢?
在军事领域,AI的应用主要集中在以下几个方面,每个方面都会消耗不同的算力资源,虽然这些作战场景具体的算力需求因任务类型和规模而异,但我们可以给出一些大致的估计:
情报收集与分析:AI用于处理来自卫星、无人机、地面传感器等的大量数据,进行图像识别、目标检测、行为分析等。这类任务需要强大的计算能力,尤其是在实时处理高清视频流和高分辨率图像时,需要每秒数百到数千TOPS(万亿次操作/秒)的算力。
决策支持系统:AI可以帮助指挥官快速分析战场态势,预测敌方行动,制定作战计划。这些系统需要处理大量的历史数据和实时数据,进行复杂的模拟和预测,可能需要每秒数十到数百TFLOPS(万亿次浮点运算/秒)的算力。
自主武器系统:如无人机、无人战车、无人舰艇等,这些系统需要进行环境感知、目标识别、路径规划等任务,要求高实时性和准确性,需要每秒数百TFOPS的算力。
网络战:AI可以用于网络攻击和防御,包括恶意软件检测、漏洞扫描、入侵检测等。这些任务通常涉及大量的数据分析和复杂的算法,可能需要每秒数十到数百TFLOPS的算力
模拟训练:AI可以创建高度逼真的虚拟战场环境,用于军事训练和模拟演习。这些模拟通常需要渲染复杂的3D场景和处理大量的交互数据,对图形处理能力和通用计算能力都有较高要求,相当于ChatGPT、国内通义千问等大模型的训练量。
可以看到,一场由AI主导的军事战争需要的算力是极其庞大的,尤其在发展AI集群化作战的前提下,战场将面临以万P为单位的算力需求,这不仅需要高性能的计算设备,还需要高效的算力管理和调度策略,以确保资源的有效利用。
随着技术的推动,未来的AI系统可能会更加高效,但对算力的需求依然会是一个关键问题。而我国由于在芯片等领域的起步较晚,提升国产AI算力资源已成为我国数字经济发展中的关键一环。随着政策与支持与技术的进步,算力基建、算力租赁也将成为这一产业发展的重要力量,为军事、金融、科研等领域提供灵活高效的高性能计算服务,选择骋风,我们将为您解锁更多算力解决方案。