定义
AB测试是指为了评估模型/项目的效果,在App/PC端同时设计多个版本,在同一纬度下,分别让组成成分相同(相似)的访客群组随机访问这些版本,收集各群组的用户体验数据和业务数据,最后分析评估出最好的版本正式采用。
过程
试验分组→进行试验→分析结果
分组方法
一种是基于特定指标(唯一标识)进行分组,分组过程中不需要对这些唯一标识进行处理。另外一种就是基于这些唯一标识,通过一个固定的hash函数对用户唯一标识进行hash取模、粪桶,将用户均匀地分配至若干个试验桶里。
多个试验并行的情况如何分组
对于所有的用户,需要在所有的试验开始前将其划分为不同的域,不同域之前的用户相互独立,交集为空。
域可以分为:独占域(重要试验)和共享域(要进行分层);
需要注意的是,在同一个共享域不可以同时进行过多的试验,即使基于正交的方法可以保证随机性,但通常最多也不要超过7个试验同时进行,同时也要考虑是否有办法验证分组的随机性。
如何证明AB测试分组的随机性?
引入AA测试。
AB测试的优缺点
优点是:能够更加科学的解释项目效果,避免人为因素的干扰;
缺点是:为了保证AB测试能够达到预期效果,需要一定数据量为保证。另外如果多个AB测试同时进行,则可能会因为相互干扰而无法达到预期的效果。