MOT:A Higher Order Metric for Evaluating Multi-object Tracking

HOTA是IJCV2020论文提出的多目标跟踪新评价标准,旨在解决MOTA过于强调检测而忽视跟踪的问题。HOTA通过结合检测精度(DetA)和关联精度(AssA)来综合评估跟踪性能,提供了一个更全面的评价指标。HOTA通过双重杰卡德系数计算,考虑了检测和关联两个方面,能够更好地反映跟踪系统的实际表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

HOTA: A Higher Order Metric for Evaluating Multi-object Tracking是IJCV 2020的paper,在此之前以MOTChallenge为主的多目标跟踪benchmark一直采用以MOTA为排名的评价标准,虽然MOTChallenge的metrics中也有IDF1,但是排名还是以MOTA为准。
但是MOTA有些情况下不足以衡量出多目标跟踪的性能,甚至都不如IDF1,所以这篇文章重新考量了多目标跟踪任务,并提出一种Higher Order Tracking Accuracy 的Metric。HOTA可以更好的对齐评价得分与人的视觉上的观感。
MOTA为主的评价在2006年就被提出,并经过MOTChallenge的加持,仍是目前主流的多目标跟踪评价标准,而HOTA刚刚提出不久,目前只有KITTI MOT在使用。即便后续真的替换了MOTA,也将需要很久。

MOTA的问题

检测的比重大于跟踪

MOTA的评价过分强调检测的效果,根据MOTA的计算方式,一种极端情况是,检测的性能非常优秀,但是所有检测到的目标不做跟踪,而是全部分配一个相同的track id,此时的MOTA会非常高,因为IDsw=0。
但是很显然,这个极端情况的跟踪表现为0。
MOTA = 1 − ∣ FN ∣ + ∣ FP ∣ + ∣ IDSW ∣ ∣ gtDet ∣ \begin{aligned} \text {MOTA} = 1 - \frac{|\text {FN}| + |\text {FP}| + |\text {IDSW}|}{|\text {gtDet}|} \end{aligned} MOTA=1gtDetFN+FP+IDSW
MOTP = 1 ∣ TP ∣ ∑ TP S \begin{aligned} \text {MOTP} = \frac{1}{|\text {TP}|}\sum _{\text {TP}}{ \mathcal {S}} \end{aligned} MOTP=TP1TPS
MOTP更是如此,在根源是就没有跟踪什么事,而是只评价检测结果。
虽然IDF1可以评价跟踪的效果,但是排名是靠着MOTA的。
ID-Recall = ∣ IDTP ∣ ∣ IDTP ∣ + ∣ IDFN ∣ \begin{aligned}&\text {ID-Recall} = \frac{|\text {IDTP}|}{|\text {IDTP}| + |\text {IDFN}|} \end{aligned} ID-Recall=IDTP+IDFNIDTP
ID-Precision = ∣ IDTP ∣ ∣ IDTP ∣ + ∣ IDFP ∣ \begin{aligned}&\text {ID-Precision} = \frac{|\text {IDTP}|}{|\text {IDTP}| + |\text {IDFP}|} \end{aligned} ID-Precision=IDTP+IDFPIDTP
IDF1 = ∣ IDTP ∣ ∣ IDTP ∣ + 0.5   ∣ IDFN ∣ + 0.5   ∣ IDFP ∣ \begin{aligned}&\text {IDF1} = \frac{|\text {IDTP}|}{|\text {IDTP}| + 0.5 \, |\text {IDFN}| + 0.5 \, |\text {IDFP}|} \end{aligned} IDF1=IDTP+0.5IDFN+0.5IDFPIDTP
图1
如上图,gt的长度为100,跟踪表现C把gt分为了4段,这个表现其实是比较差的了,但是MOTA高达97%。

Precision的比重大于Recall

定义没有IDsw的MOTA为MODA,也就是多目标检测的准确率(Multi Object Detection Accuracy),其公式如下:
MODA = 1 − ∣ FN ∣ + ∣ FP ∣ ∣ gtDet ∣ = ∣ TP ∣ − ∣ FP ∣ ∣ TP ∣ + ∣ FN ∣ = DetRe ⋅ ( 2 − 1 DetPr ) \begin{aligned} \begin{aligned} \text {MODA}&= 1 - \frac{|\text {FN}| + |\text {FP}|}{|\text {gtDet}|}&\\&= \frac{|\text {TP}| - |\text {FP}|}{|\text {TP}| + |\text {FN}|}&\\&= \text {DetRe} \cdot (2 - \frac{1}{\text {DetPr}})&\end{aligned} \end{aligned} MODA=1gtDetFN+FP=TP+FNTPFP=DetRe(2DetPr1)
可以发现,如果检测的Precision小于等于0.5的话,MODA就会为0,甚至出现负值,而检测的Recall小于等于0.5却不会造成这样的影响。

Evaluation Metric

DetA

DetA为检测的准确率,评价多目标跟踪中检测器的性能,作用与Precision和Recall差不多,所有类别的总acc如下式表示:
DetA α = ∣ TP ∣ ∣ TP ∣ + ∣ FN ∣ + ∣ FP ∣ \begin{aligned}&\text {DetA}_\alpha = \frac{|\text {TP}|}{|\text {TP}| + |\text {FN}| + |\text {FP}|}&\end{aligned} DetAα=TP+FN+FPTP

AssA

AssA为关联的准确率,评价关联的准确率,公式如下所示:
A ( c ) = ∣ TPA ( c ) ∣ ∣ TPA ( c ) ∣ + ∣ FNA ( c ) ∣ + ∣ FPA ( c ) ∣ \begin{aligned}&\mathcal {A}(c) = \frac{|\text {TPA}(c)|}{|\text {TPA}(c)| + |\text {FNA}(c)| + |\text {FPA}(c)|}&\end{aligned} A(c)=TPA(c)+FNA(c)+FPA(c)TPA(c)
AssA α = 1 ∣ TP ∣ ∑ c ∈ { TP } A ( c ) \begin{aligned}&\text {AssA}_\alpha = \frac{1}{|\text {TP}|} \sum _{c \in \{\text {TP}\}} \mathcal {A}(c)&\end{aligned} AssAα=TP1c{TP}A(c)
DetA,AssA的作用,与Precision,Recall,IDP,IDR,IDF1很相似
Precision,Recall用于评价检测的精准率与召回率,而DetA用于评价检测的准确率。
IDP,IDR,IDF1用于评价匹配的精准率,召回率与F1-score,而AssA用于评价匹配的准确率。
这就需要知道 TPA ( c ) \text {TPA}(c) TPA(c) FNA ( c ) \text {FNA}(c) FNA(c) FPA ( c ) \text {FPA}(c) FPA(c)这几个数的意思,首先 c c c是一个属于TP的点,可以是TP中的任意一个,根据这个点,我们总能确定出来一个唯一的GT轨迹,同时如果有pred轨迹与GT轨迹在这个点相交的话,我们还能确定出来一条pred轨迹。
需要注意的是,哪怕是同一条GT轨迹上不同的c,也会产生不同的 TPA ( c ) \text {TPA}(c) TPA(c) FNA ( c ) \text {FNA}(c) FNA(c) FPA ( c ) \text {FPA}(c) FPA(c),所以这三个值只能与采样绑定,不与数据集绑定。
这一点是与《Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics》不同,并没有为一个GT轨迹分配一个最大的匹配度的pred轨迹。

在这里插入图片描述
而在这里就需要

HOTA

  • 单一指标评价
  • 评估长期高阶跟踪关联
  • 分解为子指标,允许分析跟踪器性能的不同组成部分。

HOTA α = ∑ c ∈ { TP } A ( c ) ∣ TP ∣ + ∣ FN ∣ + ∣ FP ∣ \begin{aligned}&\text {HOTA}_{\alpha } = \sqrt{\frac{\sum _{c \in \{\text {TP}\}} \mathcal {A}(c) }{|\text {TP}| + |\text {FN}| + |\text {FP}|}}&\end{aligned} HOTAα=TP+FN+FPc{TP}A(c)

HOTA评价是个双重杰卡德系数,也就是取了两遍交并比,首先是 A ( c ) \mathcal {A}(c) A(c)为当前的interest-c对应的GT tracklet,计算得到的True Positive Associations,False Positive Associations与False Negative Associations,这是第一层杰卡德系数,需要注意的是interest-c不值一个,所有需要SUM。如下图所示。
第二层杰卡德系数为SUM后的 A ( c ) \mathcal {A}(c) A(c)比上检测得到的TP,FN,FP。

最后, α \alpha α是一个固定的阈值,所以 HOTA α \text {HOTA}_{\alpha } HOTAα是一个固定阈值下的结果,而HOTA是:
HOTA = ∫ 0 1 HOTA α    d α ≈ 1 19 ∑ α ∈ { 0.05 ,    0.1 ,    . . . 0.9 ,    0.95 } HOTA α \begin{aligned} \text {HOTA} = \int _{0}^{1}{ \text {HOTA}_\alpha \; d\alpha } \approx \frac{1}{19} \sum _{\alpha \in \{ \begin{array}{c} 0.05, \; 0.1, \; ... \\ 0.9, \; 0.95 \end{array} \} } \text {HOTA}_\alpha \end{aligned} HOTA=01HOTAαdα191α{0.05,0.1,...0.9,0.95}HOTAα
就是类似于coco的AP计算。

最后,根据DetA和AssA,HOTA可以通过下列计算:
HOTA α = ∑ c ∈ { TP } A ( c ) ∣ TP ∣ + ∣ FN ∣ + ∣ FP ∣ = DetA α ⋅ AssA α \begin{aligned}&\begin{aligned} \text {HOTA}_\alpha&\quad = \sqrt{\frac{\sum _{c \in \{\text {TP}\}} \mathcal {A}(c) }{|\text {TP}| + |\text {FN}| + |\text {FP}|}}&\\&\quad = \sqrt{\text {DetA}_\alpha \cdot \text {AssA}_\alpha }&\end{aligned}&\end{aligned} HOTAα=TP+FN+FPc{TP}A(c) =DetAαAssAα

HOTA分解为sub-metric

在这里插入图片描述

HOTA分解为detection和association

DetA α = ∣ TP ∣ ∣ TP ∣ + ∣ FN ∣ + ∣ FP ∣ \begin{aligned}&\text {DetA}_\alpha = \frac{|\text {TP}|}{|\text {TP}| + |\text {FN}| + |\text {FP}|}&\end{aligned} DetAα=TP+FN+FPTP
AssA α = 1 ∣ TP ∣ ∑ c ∈ { TP } A ( c ) \begin{aligned}&\text {AssA}_\alpha = \frac{1}{|\text {TP}|} \sum _{c \in \{\text {TP}\}} \mathcal {A}(c)&\end{aligned} AssAα=TP1c{TP}A(c)
A ( c ) = ∣ TPA ( c ) ∣ ∣ TPA ( c ) ∣ + ∣ FNA ( c ) ∣ + ∣ FPA ( c ) ∣ \begin{aligned}&\mathcal {A}(c) = \frac{|\text {TPA}(c)|}{|\text {TPA}(c)| + |\text {FNA}(c)| + |\text {FPA}(c)|}&\end{aligned} A(c)=TPA(c)+FNA(c)+FPA(c)TPA(c)

detection分解为precision和recall

DetRe α = ∣ TP ∣ ∣ TP ∣ + ∣ FN ∣ \begin{aligned} \text {DetRe}_\alpha&= \frac{|\text {TP}|}{|\text {TP}| + |\text {FN}| } \end{aligned} DetReα=TP+FNTP
DetPr α = ∣ TP ∣ ∣ TP ∣ + ∣ FP ∣ \begin{aligned} \text {DetPr}_\alpha&= \frac{|\text {TP}|}{|\text {TP}| + |\text {FP}| } \end{aligned} DetPrα=TP+FPTP
DetA α = DetRe α ⋅ DetPr α DetRe α + DetPr α − DetRe α . DetPr α \begin{aligned} \text {DetA}_\alpha&= \frac{\text {DetRe}_\alpha \cdot \text {DetPr}_\alpha }{\text {DetRe}_\alpha + \text {DetPr}_\alpha - \text {DetRe}_\alpha .\text {DetPr}_\alpha } \end{aligned} DetAα=DetReα+DetPrαDetReα.DetPrαDetReαDetPrα

association分解为precision和recall

AssRe α = 1 ∣ TP ∣    ∑ c ∈ { TP } ∣ TPA ( c ) ∣ ∣ TPA ( c ) ∣ + ∣ FNA ( c ) ∣ \begin{aligned} \text {AssRe}_\alpha&= \frac{1}{|\text {TP}|} \; \sum _{c \in \{\text {TP}\}} \frac{|\text {TPA}(c)|}{|\text {TPA}(c)| + |\text {FNA}(c)|} \end{aligned} AssReα=TP1c{TP}TPA(c)+FNA(c)TPA(c)
AssPr α = 1 ∣ TP ∣    ∑ c ∈ { TP } ∣ TPA ( c ) ∣ ∣ TPA ( c ) ∣ + ∣ FPA ( c ) ∣ \begin{aligned} \text {AssPr}_\alpha&= \frac{1}{|\text {TP}|} \; \sum _{c \in \{\text {TP}\}} \frac{|\text {TPA}(c)|}{|\text {TPA}(c)| + |\text {FPA}(c)|} \end{aligned} AssPrα=TP1c{TP}TPA(c)+FPA(c)TPA(c)
AssA α = AssRe α ⋅ AssPr α AssRe α + AssPr α − AssRe α ⋅ AssPr α \begin{aligned} \text {AssA}_\alpha&= \frac{\text {AssRe}_\alpha \cdot \text {AssPr}_\alpha }{\text {AssRe}_\alpha + \text {AssPr}_\alpha - \text {AssRe}_\alpha \cdot \text {AssPr}_\alpha } \end{aligned} AssAα=AssReα+AssPrαAssReαAssPrαAssReαAssPrα

Reference

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值