一、代码与开发能力
1️⃣ 编程性能领先
在 SWE-Bench Verified(代码问题解决能力测试)中,Gemini 2.5 Pro 得分 63.8%,显著高于 GPT-4.1 的 54.6%;
支持 单行提示生成完整应用(如 Flappy Bird 游戏),涵盖 HTML/CSS/JS 交互逻辑与 API 模拟,优于 GPT-4.1 的增量式代码生成模式。
2️⃣ 多语言代码转换
可跨语言转换代码(如 Python ↔ TypeScript)并保留注释结构与命名规范,GPT-4.1 在复杂工程中易丢失上下文关联。
二、多模态与长上下文处理
1️⃣ 视频与图像理解
VideoMME 测试 得分 84.8%,支持直接解析教学视频生成动态交互代码(如 Three.js 粒子动画),GPT-4.1 仅支持视频内容摘要;
首创 PDF 原生视觉解析,可识别 1000 页/50MB 大文件的图表布局,精准定位如「第三页右下角表格」等细节。
2️⃣ 上下文窗口碾压
默认支持 100 万 Token(约 75 万英文单词),即将扩展至 200 万 Token,可同时处理 3000 个 PDF 文件或完整代码库;
对比 GPT-4.1 的 128K Token 上限,长文本任务(如法律合同分析、科研文献综述)效率提升 300%。
三、数学与科学推理能力
1️⃣ 复杂问题求解
在 Humanity's Last Exam 高阶推理测试中,无工具辅助得分 18.8%,超越 OpenAI o3-mini(high) 模型;
GPQA 科学测试 准确率 86.7%,支持量子力学公式推导与跨学科理论验证,GPT-4.1 同类测试未公开具体数据。
2️⃣ 学术研究支持
可解析古籍扫描件并精准识别繁体字与异体字,OCR 准确率 100%(GPT-4.1 错误率达 30%);
支持科学论文的排版还原与数据提取,直接导出 LaTeX 格式公式。
四、成本与部署效率
1️⃣ API 成本优势
标准上下文(≤200K Token)输入费率 1.25/百万 Token**‌,长上下文(>200K Token)为 ‌**2.5,仅为 GPT-4.1 的 1/4;
多模态任务(音频/视频处理)无需额外收费,统一按 Token 计费,降低复杂应用开发门槛。
2️⃣ 开发工具优化
集成 VS Code 插件,支持「vibe coding」代码风格调整与实时预览,响应速度较前代提升 40%;
企业级用户通过 Vertex AI 平台的 TPU v5 集群加速,API 延迟低至 200ms。
总结
Gemini 2.5 Pro 在代码生成、多模态理解、长上下文处理及成本效率上全面领先 GPT-4.1,尤其适合需要处理复杂工程、科研分析或大规模文档的企业级场景。