论文笔记
文章平均质量分 95
chairon
吃的太多,学的太少。
展开
-
【论文笔记】RepVGG: Making VGG-style ConvNets Great Again
code很多因素影响推理速度,FLOPs的数量值不能真实反应实际的速度。网络推理时是一条单分支结构。只使用3x3卷积核ReLU激活函数。证明了kernel=3的有效性网络简单,没有复杂的超参数。RepVGG是由RepVGGBlock堆叠的简单网络,能很好的达到速度和精度的折中。证明了该网络在分类和分割上的有效性。通过对普通卷积进行编码得到的一条单分支网络,也是 一种 re-parameterization method。W=diag(a)I+diag(b)WnormW = diag(a)I + di原创 2022-09-22 21:08:34 · 807 阅读 · 3 评论 -
超分辨率提升IRN网络
IRN网络,实质就是为了解决图像还原的损失最小化(优化)的问题。(压缩后图像还原)首先我们采样图像等信号时候是连续的,而在计算机获取时候是离散的!所以,很明显信号状态由连续变为离散,这就会有损失了,那么损失误差是不是在容许的范围内,根据采样得到离散的点能不能还原出连续的信号?这就是该理论产生的原因,它就来帮助你解决这个问题!该采样定理的结论是:找到信号最大的频率分量,再用2倍于最大频率分量的采样频率对信号进行采样,从理论上解决了,离散信号能够重建出连续信号的问题。原创 2022-09-12 11:02:55 · 1322 阅读 · 1 评论 -
可变形卷积:DCNv1and DCNv2
可变形卷积顾名思义就是卷积的位置是可变形的,并非在传统的N × N的网格上做卷积,这样的好处就是更准确地提取到我们想要的特征(传统的卷积仅仅只能提取到矩形框的特征)(a)是标准的3×3卷积。(b),( c),(d)是给普通卷积加上偏移之后形成的可变形的卷积核,其中蓝色的是新的卷积点,箭头是位移方向。因此DCN v1提出在方形卷积核上的每个点学习一个偏移(offset),卷积核可以根据不同的数据学习不同的卷积核结构,如图1所示。在不同的阶段,不同的特征图,甚至不同的像素点上都可能有其最优的卷积核结构。原创 2022-05-10 21:47:22 · 6013 阅读 · 8 评论 -
Coordinate Attention for Efficient Mobile Network Design(CA模块)
Coordinate Attention for Efficient Mobile Network Design这篇文章提出了一个新的注意力机制,和其他注意力机制不同的是,这篇文章的注意力机制是专门为mobile networks提出的。该注意力机制将位置信息嵌入通道信息,命名为“coordinate attention”,简称CA.CA将通道注意分解为两个一维特征编码过程,分别沿两个空间方向聚合特征。通过这种方式,可以沿一个空间方向捕获长距离依赖关系,同时可以沿另一个空间方向保留精确的位置信息。官方原创 2022-02-26 11:42:07 · 3025 阅读 · 0 评论 -
EfficientDet: Scalable and Efficient Object Detection
1. 首先,我们提出了一种加权双向特征金字塔网络(BiFPN),它允许简单快速的进行多尺度特征融合。2. 其次,我们提出了一种复合缩放方法,该方法可同时对所有主干网络,特征网络和box/class预测网络的分辨率,深度和宽度进行均匀缩放。原创 2022-01-14 19:56:00 · 2351 阅读 · 0 评论 -
Focal Loss for Dense Object Detection
摘要精度高的two stage 目标检测算法流行于R-CNN,它们分类器运用了一系列稀疏的候选框目标定位;而one stage目标检测则是对可能的目标定位运用了一系列的有规律、密集的采样,更简单也更快,但是精度不如two stage。在这篇文章中,我们将探究是什么原有导致了这个现象。我们发现在dense detectors 训练期间,前景和背景种类不平衡现象加剧了,这是导致dense detectors精度不够sparse detectors 的主要原因。我们通过修改标准的交叉熵损失来处理这个问题。原创 2022-01-10 14:15:48 · 3141 阅读 · 0 评论 -
目标检测:YOLOX 解读
摘要YOLOX把YOLO 系列的detector换成了anchor free的方式,并且采取了一些优化策略:样本分配策略:simOTA,decoupled head(解耦头)的思想。原创 2021-12-30 10:59:41 · 4069 阅读 · 0 评论 -
目标检测经典论文:faster R-CNN论文详解
1.图2展示了python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构,可以清晰的看到该网络对于一副任意大小PxQ的图像:首先缩放至固定大小MxN,然后将MxN图像送入网络;而Conv layers中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3x3卷积,再分别生成positive anchors和对应bounding box regression偏移量,然后计算出proposals而Roi Pooling层则利用proposa原创 2021-09-14 15:23:47 · 2711 阅读 · 0 评论 -
Inception-v4, Inception-ResNet-V1、V2
1. Introduction除了Inception架构直接的集成 ResNet形成Inception-ResNet v1、v2之外,我们还研究了 Inception 本身是否可以通过使其更深更广而变得更高效。为此,我们设计了一个名为 Inception-v4 的新版本,它比 Inception-v3 具有更统一的简化架构和更多的 Inception 模块。2. Related Workresnet作者认为残差连接本质上是训练非常深的卷积模型所必需的。Residual connection原创 2021-08-11 17:43:01 · 535 阅读 · 0 评论 -
Inception V3
目录0 回顾1 介绍2 设计原则3 大filter size卷积的分解3.1 分解为小卷积3.2 分解为非对称卷积4 辅助分类器的效用5 feature map的size的高效减小6 Inception v37. Label Smoothing模型正则8. 在低分辨率输入情况下的性能9. 实验中的结果和对比10.结论0 回顾Inception V1:主要提出了多分支(多分辨率的filter组合)的网络Inception V2: 主要提出了BN层,提高网络性能(减少梯度消失和爆炸、防止过拟合原创 2021-08-06 11:31:46 · 22861 阅读 · 2 评论 -
目标检测经典论文:R-CNN论文详解
R-CNN论文详解文章目录R-CNN论文详解1.创新点2 网络结构3 Compute CNN features3.1 Extract region proposal3.2 Feature extraction3.3 Train CNN3.4 Save features4 Classify regions4.1 Training4.2 Testing5 Non-maximum suppression6 Bounding box regression6.1 why regression6.2 具体实现6.2原创 2021-07-28 15:22:12 · 536 阅读 · 0 评论 -
Inception V2——BN层
Abstract由于需要较低的学习率和仔细的参数初始化,这会减慢训练速度,并且使得训练具有饱和非线性的模型变得非常困难。我们将这种现象称为内部协变量偏移,并通过归一化层输入来 解决该问题。我们的方法的优势在于将标准化作为模型架构的一部分,并为每个训练mini-batch执行标准化。批量归一化允许我们使用更高的学习率并且对初始化不那么小心。它还充当正则化器,在某些情况下消除了 Dropout 的需要。应用于最先进的图像分类模型,批量归一化以减少 14 倍的训练步骤实现相同的精度,并以显着的优势原创 2021-06-10 18:07:26 · 759 阅读 · 0 评论 -
Inception-V1(Going deeper with convolutions)
GoogleNet 模型随着神经网络层数的加深,有不可避免的带来过拟合和计算量增大的困扰,谷歌团队为了减少计算量和避免过拟合,提出了Inception模型,也叫作 GoogLeNet。并在2014年,ImageNet挑战赛(ILSVRC14)中,GoogLeNet获得了第一名。GoogLeNet模型结构的特点是网络层数更深了。随着谷歌团队的研究,Inception历经了V1、V2、V3、V4等多个版本的发展1. 思想Inception 以降低参数量为目的,设计了一个稀疏网络结构,但是能够产生稠密的数据原创 2021-06-05 14:22:40 · 1172 阅读 · 0 评论