PyTorch深度学习实践
文章平均质量分 89
chairon
吃的太多,学的太少。
展开
-
YOLOv8训练自己的数据集
YOLOv8训练自己的数据集,并且对网络进行修改。原创 2024-03-20 21:21:38 · 7522 阅读 · 6 评论 -
Basic RNN
GRU 也可以被视为 LSTM 的变体,因为它们基础的理念都是相似的,且在某些情况能产生同样出色的结果。原创 2024-03-19 17:14:21 · 838 阅读 · 0 评论 -
Advanced CNN
Google Net 也叫Inception V1,是由Inception模块堆叠而成的卷积神经网络。注意:只有所有特征图大小一样(W、H一样),才能进行拼接,通道数可以不同。请实现以下两种残差结构,并用他们构建网络跑模型。然而有很多更为复杂的卷积神经网络。这是一个简单的线性的卷积神经网络。卷积层是不是越多越好?接下来,笔交给你了!原创 2024-01-31 20:17:38 · 934 阅读 · 0 评论 -
basic CNN
进行卷积之后,图像大小(W、H)可能会发生改变;生成的特征图大小不是我们想要的,比如说我们希望特征图大小在卷积之后不发生变化;使用MINIST数据集构建更为复杂的卷积神经网络进行分类,要求conv、relu、maxpooling、linear层都使用三个,参数自己调整,比较一下训练结果。图像中不同数据窗口的数据和卷积核作内积的操作叫做卷积,本质是提取图像不同频段的特征。通过二维卷积可以实现图像特征的自动提取,卷积输出的称为特征图;MaxPooling:下采样,图片W、H会缩小为原来的一半。原创 2024-01-30 21:32:36 · 1435 阅读 · 0 评论 -
Softmax分类器
之前二分类使用的是sigmoid函数进行分类,它可以把输出归一化到[0,1]之间。如果使用Sigmoid激活函数进行多分类,会出现一个问题:每个类别的概率都是[0,1]之间,他们加起来的概率和可能就不为1.我们想要的结果是满足一个分布:概率P>=0;MINIST数据是一个28*28像素的矩阵,如果把它线性隐射到[0,1]之间。图像我们通常会有通道这个概念,可以理解为一个通道就是一个图像的矩阵。标签采用One-hot编码,与预测的概率值计算损失。其实就是对输出值y取对数,然后再除以输出的对数之和。原创 2024-01-29 22:35:46 · 1428 阅读 · 0 评论 -
Dataloader加载数据集
是一个数据竞赛网站,提供了很多数据集和解决方案,可以在上面提交代码。torchvision.datasets提供了许多数据集。(其实就是第一步、第四步有所改动)请使用MNIST数据集构建一个线性模型分类器。上节课使用全部数据进行训练。MNIST数据集的使用。原创 2024-01-28 20:36:46 · 876 阅读 · 0 评论 -
处理多维特征的输入
多维数据的处理原创 2024-01-27 13:53:05 · 863 阅读 · 0 评论 -
逻辑回归(Logistic Regression)
线性回归是用于预测连续值,做预测;而逻辑回归是预测离散值,即是用来分类的。原创 2024-01-16 13:35:52 · 1299 阅读 · 0 评论 -
用Pytorch实现线性回归模型
通过构造一个 class LinearModel类来实现,所有的模型类都需要继承nn.Module,这是所有神经忘了模块的基础类。在PyTorch中计算图是通过mini-batch形式进行,所以X、Y都是多维的Tensor。前面已经学习过线性模型相关的内容,实现线性模型的过程并没有使用到Pytorch。之前用过Pytorch的Tensor进行Forward、Backward计算。():它使类的实例可以像函数一样被调用。而使用Pytorch构造模型,重点时在构建计算图和损失函数上。采用MSE作为损失函数。原创 2024-01-15 21:41:24 · 1739 阅读 · 2 评论 -
反向传播(Back Propagation)
反向利用链式求导法则计算:Loss对x、w的偏导数(我们最终要求的结果!最简单的线性模型可以简化为y=wx,x是输入,w是参数,是模型需要计算出来的,y是预测值,*可以看成网络中的计算。如果按照之前的梯度下降,根据链式求导法则,那么需要计算的微分公式非常长,计算非常复杂。已知:loss对r的偏导数:-2 、r对y_hat偏导数:1、y_hat对w偏导数:1。即y 对x 的导数,等于y 对u 的导数,乘以u 对x 的导数。求得:loss对w的偏导数:根据链式求导法则,相乘就可以得到啦!原创 2024-01-11 16:59:12 · 1142 阅读 · 0 评论 -
梯度下降算法
微分(导数),>0:函数上升,损失值在增大,w应该减小(梯度的反方向运动);原创 2024-01-10 11:16:01 · 1012 阅读 · 0 评论 -
Linear Regression 线性回归
假设学生用x小时学习深度学习,能够得要y分数:那么学习4小时,能够得到多少分?用已知数据作为训练集:选取线性模型作为模型进行预测,线性模型是最简单的模型:𝑦=𝑥∗𝜔+𝑏,我们需要求:𝜔、𝑏在本次案例中,为了简化模型,使𝑦=𝑥∗𝜔:最开始𝜔是选取一个随机值,然后通过训练想要找到一个𝜔的取值使得生成的预测函数与真实值的差异尽可能小,即损失尽可能小。我们采用损失函数来衡量真实值与预测值之间的差异,目标就是:找到一个𝜔使得损失函数的值最小。原创 2024-01-04 12:34:22 · 483 阅读 · 0 评论 -
YOLOv8代码下载及环境配置
YOLOv8零基础配置教程。原创 2023-12-18 21:12:21 · 2843 阅读 · 0 评论 -
Windows11环境下配置深度学习环境(Pytorch)
Pytorch安装原创 2023-12-17 15:30:18 · 2459 阅读 · 0 评论 -
Pytorch学习概述
普遍认为,卷积神经网络的出现开始于LeCun 等提出的LeNet 网络(LeCun et al., 1998) ,可以说LeCun 等是CNN 的缔造者,而LeNet-5 则是LeCun 等创造的CNN 经典之作。随着技术的进步和研究的深入,学习系统的能力不断提高,已经在许多领域取得了重要的应用和突破。例如,通过机器学习算法,人工智能可以学习玩家的游戏习惯,自动调整游戏的难度,提供更好的游戏体验。随着人工智能技术的不断进步和创新,我们相信它将为人类带来更多的便利和创新,推动社会的进步和发展。原创 2023-12-13 17:26:40 · 161 阅读 · 0 评论