
python OpenCV3.3 图像处理教程
文章平均质量分 82
chairon
吃的太多,学的太少。
展开
-
【python OpenCV3.3 图像处理教程:直线检测、圆检测、对象测量、腐蚀、膨胀等形态学操作、数字验证码识别、人脸检测
1. 直线检测Hough Line Transform:前提:边缘检测已经完成,基于霍夫变换1.1 原理可以通过(theta,r)唯一表示一条直线把过三个点的全部直线以某一角度全部计算出来,如果三个点的直线有相同的,则说明有一条直线过了这三个点。至于为啥用(theta, r)而不是斜率k和截距b来表示一条直线,是因为利用y = kx + b来表示直线时,存在斜率k无穷大的情况,无法计算。并且theta为0到2*pi, 且对于直线来说r一定小于等于b,所以计算的数值也相对较小。参考博客d原创 2022-04-26 16:48:38 · 5565 阅读 · 0 评论 -
【python OpenCV3.3 图像处理教程】边缘保留滤波EFP、直方图均衡化、反向投影、轮廓发现、
1. 边缘保留滤波EFP高斯双边滤波:cv.bilateralFilter均值迁移滤波:cv.pyrMeanShiftFiltering来自这篇博客的定义:高斯模糊: 基于权重,权重只考虑像素空间的分布,中间的权重大,边缘的权重小。没有考虑像素值之间的差异问题,没有考虑边缘。边缘保留滤波: 像素之间的差异很大,说明是显著特征,如果直接平滑(滤波),显著特征会消失。像素之间差异大的地方通常是边缘,所以边缘保留滤波处理后的图片,在平滑(滤波)的情况下,依旧能够保留图像的边缘。边缘保留滤波EF原创 2022-04-21 17:34:49 · 4573 阅读 · 0 评论 -
【python opencv3.3图像处理】——图像二值化、图像梯度、图像金字塔、Candy边缘提取
1.图像二值化全局阈值分割“cv.THRESH_TRIANGLE” 只有单个波峰时效果较好,分割细胞图一般用"cv.THRESH_OTSU"“cv.THRESH_TRUNC”,截断,大于阈值设为阈值“THRESH_TOZERO”,小于阈值设为0cv.threshold(gray,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)#自动寻找阈值,"cv.THRESH_OTSU" 选取阈值的方法局部阈值分割适合光线不均匀的情况下 # binary原创 2022-04-19 14:30:15 · 4509 阅读 · 0 评论 -
【python OpenCV3.3图片处理教程】-图像基本运算、色彩空间、ROI、模糊去噪
一. 读取图片、视频等基本操作cv.bitwise_not(image)#像素取反import cv2 as cvimport numpy as npdef vedio_demo(): capture=cv.VideoCapture(0) while(True): ret,frame=capture.read() frame=cv.flip(frame,1)#反转 cv.imshow("video",frame) c原创 2022-04-18 12:31:45 · 2054 阅读 · 0 评论