
目标检测
文章平均质量分 77
chairon
吃的太多,学的太少。
展开
-
YOLOv8训练自己的数据集
YOLOv8训练自己的数据集,并且对网络进行修改。原创 2024-03-20 21:21:38 · 11295 阅读 · 7 评论 -
YOLOv8代码下载及环境配置
YOLOv8零基础配置教程。原创 2023-12-18 21:12:21 · 3913 阅读 · 0 评论 -
YOLOX3.0版本训练
修改exps/example/yolox_voc/yolox_voc_s.py里的类型信息、数据集信息。修改 yolox/data/datasets/voc_classes.py的类别,改为自己的类别。修改yolox/data/datasets/voc.py中的这一行代码。其中VOC2007上面那两个文件夹是自动生成的不用管。准备VOC数据集,格式如下图。原创 2022-09-09 23:16:03 · 679 阅读 · 2 评论 -
可变形卷积:DCNv1and DCNv2
可变形卷积顾名思义就是卷积的位置是可变形的,并非在传统的N × N的网格上做卷积,这样的好处就是更准确地提取到我们想要的特征(传统的卷积仅仅只能提取到矩形框的特征)(a)是标准的3×3卷积。(b),( c),(d)是给普通卷积加上偏移之后形成的可变形的卷积核,其中蓝色的是新的卷积点,箭头是位移方向。因此DCN v1提出在方形卷积核上的每个点学习一个偏移(offset),卷积核可以根据不同的数据学习不同的卷积核结构,如图1所示。在不同的阶段,不同的特征图,甚至不同的像素点上都可能有其最优的卷积核结构。原创 2022-05-10 21:47:22 · 6444 阅读 · 10 评论 -
Anchor机制小结:Yolov1~Yolov5
1. Anchor定义就是一个多尺度的滑动窗口,在特征图上的每个cell上生成不同尺寸、不同高宽比的Anchor,也叫先验框为什么要引入多种比例的Anchor?物体检测:一些候选区域进行分类和回归的问题。检测目标的大小、形状各不相同2. Anchor工作过程以YOLOv5为例,利用k-means根据数据集中目标主要分布的长宽尺度聚类出来的一组Anchor。anchor4个值: x1,y1,x2,y2表矩形左上和右下角点坐标。聚类生成3种尺度,每组尺度有3种长宽比为:1:1,1:2,2:1原创 2022-04-16 17:34:08 · 3197 阅读 · 0 评论 -
图像注意力机制
1.SE模块SE模块属于通道注意力机制,让网络重视最重要的通道。过程:对输入特征进行全局平均池化进行两个全连接,提取通道注意力,再用Sigmoid函数归一化到[0,1],之间作为输入的权重进行相乘。import torchimport torch.nn as nnimport mathclass se_block(nn.Module): def __init__(self, channel, ratio=16): super(se_block, self)._原创 2022-03-28 11:42:00 · 1022 阅读 · 0 评论 -
目标检测1:概念及传统目标检测方法
1. 目标检测问题定义目标检测是对图片中的可变数量的目标进行查找和分类。目标种类和数量问题(可变)目标尺度问题(有大有小)外在环境干扰问题(背景)2. 目标检测问题方法2.1 传统目标检测到深度学习目标检测方法的变迁2.2 算法基本流程3.传统目标检测方法:Vila-Jones(人脸识别)HOG+SVM(行人检测、OpenCV实现):HOG主要用于灰度图,与cell大小、map梯度有关DPM(物体检测):基于HOG,是非深度学习中较优的一种方法。原创 2020-09-20 11:54:59 · 1049 阅读 · 0 评论