
机器学习
文章平均质量分 68
chairon
吃的太多,学的太少。
展开
-
【机器学习】——无监督学习:KMeans
k-均值聚类是基于划分的聚类算法,计算样本点与类簇质心的距离,与类簇质心相近的样本点划分为同一类簇。k-均值通过样本间的距离来衡量它们之间的相似度,两个样本距离越远,则相似度越低,否则相似度越高。聚类目标:得到较高的簇内相似度和较低的簇间相似度,使得簇间的距离尽可能大,簇内样本与簇中心的距离尽可能小(簇内距离尽可能小,簇间距离尽可能大)聚类得到的簇可以用聚类中心、簇大小、簇密度和簇描述等来表示。将未标记的样本自动划分成多个类簇(无标签数据)原创 2024-12-16 11:53:40 · 1360 阅读 · 0 评论 -
【机器学习算法】——决策树:CART
CART全称叫Classification and Regression Tree,即分类与回归树。CART假设决策树是二叉树,内部结点特征的取值只有“是”和“否”,左分支是取值为“是”的分支,有分支则相反。这样的决策树等价于递归地二分每个特征。原创 2024-12-12 11:29:06 · 926 阅读 · 0 评论 -
【机器学习算法】——数据可视化
是一种非常有用的数据可视化工具,它不仅可以展示数据的中位数、四分位数,还可以直观地表示异常值,帮助用户快速了解数据的集中趋势、分散程度和异常情况。散点图(Scatter Plot)是一种用于显示两个变量之间关系的图表,通过在坐标平面上描绘点来展示数据的分布和趋势。它将两个或多个变量的值在同一个轴上以堆叠的形式展示出来,使得观察者可以清晰地看到每个变量的总和以及它们各自的部分。一种用于展示数据分布特征的统计图表,它通过将数据分组并计算每组中的频数或频率来表示数据的分布情况。原创 2024-12-09 17:07:16 · 661 阅读 · 0 评论 -
【机器学习算法】——数据降维算法
climate_data = np.random.rand(50, 4) # 50个地区,每个地区4个气候指标。奇异值分解(Singular Value Decomposition) 是。的一种方法,在机器学习领域具有广泛的应用。没有改变样本之间的线性关系,只是应用了新的坐标系。N–>K维,取前K个特征值对应的特征向量。缺点:不适合数据量和数据维度非常大的时候。训练(在这里就是降维的过程)是许多机器学习算法的基石。其实核心代码就这两行。对鸢尾花数据进行降维。原创 2024-12-09 10:03:30 · 1002 阅读 · 0 评论 -
【机器学习算法】——逻辑回归
一般计算其中一个类别的概率P,自然会得到另一个类别的概率1-P。假如一个人是女生的概率是0.7,是男生的概率是多少呢?那你会认为这个人是男生还是女生呢?一般认为概率最大的类别为分类结果。逻辑回归是用来二分类的!是在线性回归模型之后加了一个激活函数(Sigmoid)将预测值归一化到【0~1】之间,变成概率值。原创 2024-12-04 11:39:39 · 542 阅读 · 1 评论 -
【机器学习算法】——线性回归
X, Y = np.meshgrid(x, y) 代表的是将x中每一个数据和y中每一个数据组合生成很多点,然后将这些点的x坐标放入到X中,y坐标放入Y中,并且相应位置是对应的。实现线性模型(y=wx+b)并输出loss的3D图像。我们采用损失函数来衡量真实值与预测值之间的差异。采用真实值与预测值的平方作为损失函数(loss)目标:找到一个𝜔使得损失函数的值最小。这里设函数为y=3x+1.5。原创 2024-12-04 09:59:42 · 395 阅读 · 0 评论 -
笔记——线性回归算法总结
1. 线性回归VS KNN线性回归算法KNN典型参数学习非参数学习只能解决回归问题,但是在很多分类算法中,线性回归是基础(逻辑回归)既可以解决分类问题,又可以解决回归问题,但是解决回归问题,准确率没用线性回归算法高对数据有假设:假设数据有线性关系没有假设对数据有强解释性没有解释性2. 线性回归算法公式...原创 2022-09-10 11:31:01 · 119 阅读 · 0 评论 -
机器学习笔记: GridSearchCV——寻找最好的超参数
评估两个向量的夹角的相似度,计算两个向量的夹角余弦值 .相似度越小,距离越大。相似度越大,距离越小。原创 2020-07-09 12:06:16 · 676 阅读 · 0 评论 -
机器学习: 准确率判定和超参数——handwritten digits dataset
【代码】机器学习: 准确率判定和超参数——handwritten digits dataset。原创 2020-07-05 11:24:04 · 653 阅读 · 0 评论 -
KNN代码整理
【代码】KNN代码整理。原创 2020-06-30 20:23:09 · 316 阅读 · 0 评论 -
Machine Learning:KNN
【代码】小余同学的Machine Learning 2。原创 2020-06-30 13:57:38 · 274 阅读 · 0 评论 -
小余同学的机器学习笔记1
总的来说算法没有好坏之分,只能说具体某个问题,有些算法更好一点。脱离具体问题谈没有意义。在面临具体问题时要多进行尝试,进行比较。算法为王还是数据为王?…原创 2020-06-02 19:49:59 · 308 阅读 · 0 评论