笔记
文章平均质量分 62
chairon
吃的太多,学的太少。
展开
-
MarkDown基础语法
MarkDown 语法字体加粗斜体加粗+斜体线条删除线~引用这是一段引用分割线图片超链接[点击跳转到b站首页](哔哩哔哩 (゜-゜)つロ 干杯~-bilibili)列表onetwoonetwo表格姓名年龄职业余23学生nameagework123456代码public student(){ }...原创 2022-01-10 15:41:13 · 69 阅读 · 0 评论 -
小甲鱼教学笔记——pickle:腌制+Exception:异常处理
pickle将所有类型数据转化成二进制文件存储import picklemy_list=[123,3.14,['anther list']]pickle_file=open('my_list.pkl','wb')pickle.dump(my_list,pickle_file)pickle_file.close()读取pickle_file=open('my_list.pkl','rb')my_list2=pickle.load(pickle_file)print(my_l原创 2020-08-31 17:45:46 · 190 阅读 · 0 评论 -
小甲鱼教学笔记——文件系统
os模块import osos.getcwd()'C:\\Users\\samsung\\Machine Learning\\初心'os.listdir('C:\\Users\\samsung\\Machine Learning\\初心')['.ipynb_checkpoints', '6.30.ipynb', '7.7.ipynb', 'boy_1.txt', 'boy_2.txt', 'boy_3.txt', 'girl1.txt', 'girl2.txt', 'g原创 2020-08-30 17:51:41 · 360 阅读 · 0 评论 -
小甲鱼教学笔记——文件
文件的读取help(open)Help on built-in function open in module io:open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None) Open file and return a stream. Raise OSError upon failure. file is either原创 2020-08-29 17:34:22 · 251 阅读 · 0 评论 -
小甲鱼教学笔记——字典、集合
1. 字典:属于映射类型,不是序列{}dict()brand=['李宁','耐克','阿迪达斯','鱼C工作室']slogan=['一切皆有可能','Just do it','Impossible is nothing','让编程改变世界']print('鱼c工作室的口号是:',slogan[brand.index('鱼C工作室')])鱼c工作室的口号是: 让编程改变世界dict1={'李宁':'一切皆有可能','耐克':'Just do it','阿迪达斯':'Impossible原创 2020-08-15 19:28:37 · 191 阅读 · 0 评论 -
小甲鱼教学笔记——函数
1. 定义函数def MyFisrtFunction(): print("第一个函数")MyFisrtFunction()第一个函数def MySecondFunction(name): print(name+'我爱你') MySecondFunction('余红霞')余红霞我爱你def add(num1,num2): result=num1+num2 print(result)add(1,3)42. 函数的返回值def add原创 2020-08-14 18:52:07 · 280 阅读 · 0 评论 -
小甲鱼教学笔记——列表:常用操作符、字符串格式化、序列
1. 列表:常用操作符list1=[123]list2=[234]list1>list2Falselist1=[1,2,3]list2=[2,3,4]list1>list2Falselist3=[1,2,3](list1<list2)and(list1==list3)Truelist4=list1+list2list4[1, 2, 3, 2, 3, 4]list1*3[1, 2, 3, 1, 2, 3, 1, 2, 3]list3=[1原创 2020-08-12 17:48:51 · 257 阅读 · 0 评论 -
小甲鱼教学笔记——元组、字符串
元组:带了枷锁的列表不可被修改逗号是关键,()不是关键1.创建和访问元组tuple1=(1,2,3,4,5,6,7,8,9)tuple1(1, 2, 3, 4, 5, 6, 7, 8, 9)tuple1[1]2tuple1[5:](6, 7, 8, 9)tuple2=tuple1tuple2(1, 2, 3, 4, 5, 6, 7, 8, 9)tuple1[1]=3#不可以被修改---------------------------------------原创 2020-08-10 21:19:56 · 244 阅读 · 0 评论 -
小余同学的小甲鱼教学笔记呀
1. 输出x=3y=4x,y=y,xprint(x)4print('let us learn python!')let us learn python!print("let us learn python!")let us learn python!print('"let us learn python!"')"let us learn python!"print("\"let us learn python!\""\n)"let us learn python!原创 2020-08-09 17:02:01 · 350 阅读 · 0 评论 -
阿里云大学笔记——感知器
0. 感知器:感知器——神经网络的组成单元(神经元)和逻辑回归相似,但是激活函数不同,损失函数计算不同。感知器不仅仅可以实现简单的不二运算,它还可以拟合线性函数,任何的线性分类或线性回归问题都可以用感知器来解决。感知器定义:1. 导入鸢尾花数据集import numpy as npimport pandas as pddata=pd.read_csv("data/iris.csv")data.head() SepalLength原创 2020-08-08 21:56:30 · 205 阅读 · 0 评论 -
阿里云大学笔记——K-Means聚类算法
0.k-means算法1.概念k-means属于无监督学习的聚类算法。适用于:簇内相似性较高,簇间相似性较低。k个初始聚簇中心的选择会影响结果。2.实现过程:选择初始的k个聚簇中心把除开聚簇中心之外的点,依次计算到每个聚簇中心向量的距离。选择距离最近的聚簇中心,加入该簇。更新聚簇中心:为簇内每个点的向量的平均值。循环2、3,直到到达最大迭代次数或者聚簇中心不再发生改变。1. 导入数据集import numpy as npimport pandas as pddata=p原创 2020-08-08 21:52:03 · 423 阅读 · 0 评论 -
阿里云大学笔记——逻辑回归
0.逻辑回归概念目的:解决分类问题。实际:将连续值通过sigmoid函数映射到[0,1]之间,该值为分类为1的概率。p>=0.5判定为类别1,否则判定为类别0。是广义的线性回归。相当于把线性回归算法的目标函数值映射到[0,1]之间,进行分类。详细概念1. 导入鸢尾花数据集import numpy as npimport pandas as pddata=pd.read_csv("data/iris.csv")data.drop_duplicates(inplace=Tr原创 2020-08-04 20:07:46 · 197 阅读 · 0 评论 -
笔记——线性回归的实现
1. 简单线性回归import numpy as npfrom metrics import r2_scoreclass SimpleLinearRegression1: def __init__(self): """初始化SimpleLinearRegression模型""" self.a_=None self.b_=None def fit(self,x_train,y_train): """根据训练数据集x_trai原创 2020-08-03 17:34:59 · 196 阅读 · 0 评论 -
阿里云大学笔记——线性回归:梯度下降法
1. 导入波士顿房价数据集import numpy as npimport pandas as pddata=pd.read_csv("data/boston.csv")data.head() CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT原创 2020-08-02 14:05:34 · 280 阅读 · 0 评论 -
阿里云大学笔记——线性回归:最小二乘法
1.导入波士顿房价数据import numpy as npimport pandas as pddata=pd.read_csv("data/boston.csv")data CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT M原创 2020-07-31 20:15:38 · 1123 阅读 · 0 评论 -
阿里云大学 笔记——KNN回归
1.导入鸢尾花数据集import numpy as npimport pandas as pddata=pd.read_csv("data/iris.csv")data.head() SepalLength SepalWidth PetalLength PetalWidth Name 0 5.1 3.5 1.4原创 2020-07-30 18:44:04 · 306 阅读 · 0 评论 -
阿里云大学 笔记——KNN分类
1. 导入鸢尾花数据集import numpy as npimport pandas as pdfrom sklearn import datasets#读取鸢尾花数据集,header参数制定标题的行,默认为0,没标题为Nonedata=pd.read_csv("data/iris.csv",header=0)data.head()#随机抽取样本,默认为1.data.sample(10)#将类别文本映射为数值类型data["Name"]=data["Name"].map({"Iris-原创 2020-07-30 18:42:17 · 260 阅读 · 0 评论 -
笔记——Train_test_split
1. train_test_split 1# train_test_split##将x训练集中的元素进行乱序处理,返回索引shuffle_indexes=np.random.permutation(len(x))## 划分训练数据集、测试数据集test_ratio=0.2test_size=int(len(x)*test_ratio)test_indexes=shuffle_indexes[:test_size]train_indexes=shuffle_indexes[test_si原创 2020-07-30 18:23:21 · 578 阅读 · 0 评论 -
笔记——KNN算法实现分类和回归
1. KNN分类class KNN: def __init__(self,k): """初始化 """ self.k=k def fit(self,X,y): """训练方法 X:类数组类型(二维) 待训练的样本特征(属性) y:(一维) 样本的目标值(标签)""" self.X=np.asarray(X)#转化为ndarray数组类型 self.y=np.asarray(y原创 2020-07-30 18:11:18 · 1418 阅读 · 0 评论 -
一些杂七杂八的小知识
1. 智能:感知与认识学习经验分析、解决问题联想、推理、判断和决策的能力——>预测运用语言进行抽象和概括发现、发明、创造、创新(高级)实时反应力根据历史,预测事物未来发展2. 神经网络模型(ANN)1. 能力特征:- 自学习(能调节参数适应变化)、自组织(可按输入刺激调整神经网络)与自适应性2. 结构特点:+ 并行性+ 分布性+ 互联性:各处理单位之间互联+ 可塑性:连接方式多样,结构可塑3. 性能特点:高度的非线性:多个单元连接,体现出高度的非线性良好的容原创 2020-07-26 17:57:37 · 154 阅读 · 0 评论 -
笔记5——pandas基本功能
import pandas as pdimport numpy as npindex=pd.date_range('1/1/2000',periods=8)s=pd.Series(np.random.randn(5),index=['a','b','c','d','e'])df=pd.DataFrame(np.random.randn(8,3),index=index,columns=['A',"B","C"])1.头和尾:要查看Series或DataFrame对象的小样本,请使用 hea原创 2020-07-26 17:06:18 · 139 阅读 · 0 评论 -
笔记——pandas学习4
处理时间序列数据import pandas as pdimport matplotlib.pyplot as pltair_quality=pd.read_csv("data/air_quality_no2_long.csv")air_quality=air_quality.rename(columns={"date.utc":"datetime"})air_quality city country datetime原创 2020-07-26 17:05:27 · 330 阅读 · 0 评论 -
笔记——pandas学习3
合并来自多个表的数据import pandas as pdair_quality_no2=pd.read_csv("data/air_quality_long.csv",parse_dates=True)#parse_dates参数:将csv中的时间字符串转换成日期格式air_quality_no2=air_quality_no2[["date.utc","location","parameter","value"]]air_quality_no2.head()原创 2020-07-26 17:01:49 · 209 阅读 · 0 评论 -
笔记——pandas学习2
在pandas中创建图像import pandas as pdimport matplotlib.pyplot as plt1. 使用空气质量数据air_quality_no2.csvair_quality=pd.read_csv("data/air_quality_no2.csv",index_col=0,parse_dates=True)air_quality.head()#index_col=0,parse_dates=True表示把返回的表格的第一列作为索引,#把列中的数组转化为Ti原创 2020-07-26 17:00:11 · 1104 阅读 · 0 评论 -
笔记——pandas学习1
导入pandasimport pandas as pd1. 字典键将用作列标题,而每个列表中的值将用作的行DataFrame。In [2]: df = pd.DataFrame({ ...: "Name": ["Braund, Mr. Owen Harris", ...: "Allen, Mr. William Henry", ...: "Bonnell, Miss. Elizabeth"], ...: "A原创 2020-07-26 16:45:42 · 263 阅读 · 0 评论 -
笔记——线性回归中使用梯度下降法
线性回归中使用梯度下降法目的:求解损失函数的唯一最优解1. 梯度下降法不是一个机器学习算法,只是一种基于搜索的最优化方法。作用:最小化损失函数。梯度上升法:最大化效用函数。注意:n称为学习率(learning rate)n的取值影响获得最优解的速度n取得不合适,可能得不到最优解n是梯度下降算法的一个超参数问题:不是所有函数都有唯一的极值点,有些函数可能有多个,运行一次可能得到的是局部最优解,不是全局最优解。解决:- 运行多次,随机化初始点。- 梯度下降法的初始点原创 2020-07-16 18:19:05 · 378 阅读 · 0 评论 -
关于线性回归算法的总结与思考
1. 线性回归VS KNN线性回归算法KNN典型参数学习非参数学习只能解决回归问题,但是在很多分类算法中,线性回归是基础(逻辑回归)既可以解决分类问题,又可以解决回归问题,但是解决回归问题,准确率没用线性回归算法高对数据有假设:假设数据有线性关系没有假设对数据有强解释性没有解释性2. 线性回归算法公式3. 更多关于线性回归模型的讨论import numpy as npfrom sklearn import datasetsboston=d原创 2020-07-15 14:11:20 · 792 阅读 · 0 评论 -
笔记——实现多元线性回归模型LinearRegression&& KNN Regressor
算法有待我再琢磨琢磨导入boston房价数据import numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasetsboston=datasets.load_boston()X=boston.datay=boston.targetX=X[y<50.0]y=y[y<50.0]X.shape(490, 13)导入自己写的LinearRegression.pyfrom sklea...原创 2020-07-14 19:51:54 · 929 阅读 · 0 评论 -
笔记——衡量回归算法的标准&&最好的评价指标R Square
最好的衡量指标:R SquareSimpleLinearRegression中默认封装R Square这种指标在score函数中,用于评价线性回归算法的准确度R方=1-MSE/方差代码import numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasets波士顿房产数据boston=datasets.load_boston()boston.DESCRboston.feature_...原创 2020-07-14 11:42:54 · 1124 阅读 · 0 评论 -
SimpleLinearRegression向量化
1. 两种方式实现的简单线性回归的python代码1.用for循环求a、b的值2.用向量运算------>性能提高很多import numpy as npclass SimpleLinearRegression1: def __init__(self): """初始化SimpleLinearRegression模型""" self.a_=None self.b_=None def fit(self,x_train,y_train原创 2020-07-11 15:13:15 · 278 阅读 · 0 评论 -
笔记——简单线性回归1
1. 线性回归算法- 解决回归问题- 算法简单- 许多强大的非线性模型的基础- 结果具有可解释性- 蕴含机器学习中很多重要的思想2. 分类问题和回归问题分类问题的坐标轴都表示属性,坐标轴中的点的颜色表示分类结果;回归问题的y轴表示预测结果,x轴表示属性(简单线性回归)3. 简单线性回归- 适用于只有一个属性- 找到最佳拟合曲线y=a*x+b- 找到参数a,b使每一个样本点x_train的y_train和y_predict之间的差距尽量小(找到参数a,b,使损失函数/效用函数原创 2020-07-11 15:00:51 · 189 阅读 · 0 评论 -
关于KNN算法的一些.......
KNN算法1.优点: 简单2.缺点:- 利用率不高,费时- 高度数据相关,边界数据影响很大- 结果不具备解释性- 维度灾难----->降维3. 可以用于分类4. 也可以用于回归机器学习过程把数据分为测试数据和训练数据对测试数据集进行归一化、测试数据集进行归一化进行训练,判断准确度·可以通过网格搜索来获得最好的超参数,提高准确度...原创 2020-07-09 18:23:42 · 147 阅读 · 0 评论 -
笔记——数据归一化 scikit-learn中的Scaler
数据归一化除了·边界比较明显的数据集(像素),一般用均值方差归一化。测试数据集要用训练集的平均数和标准差进行归一化import numpy as npimport matplotlib.pyplot as plt最值归一化 normalizationx=np.random.randint(0,100,100)xarray([84, 5, 7, 97, 16, 15, 64, 71, 55, 58, 12, 0, 73, 41, 27, 92, 97, 21,原创 2020-07-09 18:00:18 · 771 阅读 · 0 评论 -
机器学习笔记: GridSearchCV——寻找最好的超参数
评估两个向量的夹角的相似度,计算两个向量的夹角余弦值 .相似度越小,距离越大。相似度越大,距离越小。原创 2020-07-09 12:06:16 · 579 阅读 · 0 评论 -
机器学习: 准确率判定和超参数——handwritten digits dataset
【代码】机器学习: 准确率判定和超参数——handwritten digits dataset。原创 2020-07-05 11:24:04 · 613 阅读 · 0 评论 -
KNN代码整理
【代码】KNN代码整理。原创 2020-06-30 20:23:09 · 284 阅读 · 0 评论 -
python小甲鱼教学:01
使用原始字符r使用原始字符r,转义字符将不再有效字符串最后加反斜杠表示字符串没完,换行可以使用长字符串输出重现随机数Python中0.1+0.2>0.3float 是非精确的存储想精确的处理小数时,可以使用decimal引入demical(十进制)从左往右,只有当第一个操作数的值无法确定逻辑运算结果时,才对第二个操作数进行求值。range()函数增append()只能只能增加一个元素extend()只能是可迭代元素删除:remove()只能移走与之匹配的第一个元素。原创 2020-06-30 14:15:56 · 185 阅读 · 1 评论 -
Machine Learning:KNN
【代码】小余同学的Machine Learning 2。原创 2020-06-30 13:57:38 · 256 阅读 · 0 评论 -
小余同学的Hello Machine Learning
numpy()的使用import numpynumpy.__version__'1.18.1'import numpy as npnp.__version__'1.18.1'num=[i for i in range(10)]num[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]num[5]=100num[0, 1, 2, 3, 4, 100, 6, 7, 8, 9]num[5]="Machine Learning"num[0, 1, 2, 3,原创 2020-06-30 13:49:22 · 370 阅读 · 0 评论 -
小余同学的机器学习笔记3——Numpy()的使用
numpy:生成数组或者向量1.导入numpyimport numpynumpy.__version__//查看版本号2.数组的使用使用切片生成的数组,对于成员类型没有限制使用array()生成的数组,不允许不同类型的数据出现。np.array()相当于array()。3. 数据类型4. 其他创建numpy的方法np.zeros()np.ones()、np.full()3.Np.arrange()4.Np.linspace(start,end,num) 在这端原创 2020-06-29 18:14:21 · 1680 阅读 · 0 评论