Improving Graph Contrastive Learningvia AdaptivePositiveSampling

发表期刊:CVPR24
推荐指数: #paper/⭐

总结:

其用了前两年用烂了的利用阈值构造正样本对.负样本对的方法,将其用在了异配图而已,给了证明,创新性乏善可陈

问题引入

问题背景

现有的对比学习的主要问题在于正样本采样.主要有两个方面的限制:
不完全的本地采样
不完全的盲抽样(限制对比的表现)

提出方法:

新的自适应正样本模型,命名为HEATS

本文贡献

研究了最优正样本对的亲和力矩阵(affinity matrix)的特征
提出了一个自适应捕获正样本对的策略

预备知识:

Z = [ Z 1 0 ⋯ 0 0 Z 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ Z k ] , \mathbf{Z}=\begin{bmatrix}\mathbf{Z}_1&0&\cdots&0\\0&\mathbf{Z}_2&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&\mathbf{Z}_k\end{bmatrix}, Z= Z1000Z2000Zk ,

  • Z i Z_{i} Zi代表低I个平方子矩阵块.(即:Z1,Z2----Zk表示第K个类的关系图,可以这样理解)
  • 归一化后,这个矩阵可以写为:
  • Z = [ 1 n 1 1 n 1 1 n 1 ⊤ 0 ⋯ 0 0 1 n 2 1 n 2 1 n 2 ⊤ ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 n k 1 n k 1 n k ⊤ ] , \begin{gathered}\mathbf{Z}=\begin{bmatrix}\frac1{n_1}\mathbf{1}_{n_1}\mathbf{1}_{n_1}^\top&0&\cdots&0\\0&\frac1{n_2}\mathbf{1}_{n_2}\mathbf{1}_{n_2}^\top&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&\frac1{n_k}\mathbf{1}_{n_k}\mathbf{1}_{n_k}^\top\end{bmatrix},\end{gathered} Z= n111n11n1000n211n21n2000nk11nk1nk ,

主要部分

采取的策略:

矩阵构建
对比学习

矩阵构建模块

在构建亲和矩阵时,这一部分基于一个假设:同一个现行子空间的样本可以由其他样本互相表示 argmin ⁡ Z , E O ( Z ) + λ T ( E ) , s.t. ⁡ X = Z X + E \operatorname{argmin}_{\mathbf{Z},\mathbf{E}}\mathcal{O}(\mathbf{Z})+\lambda\mathcal{T}(\mathbf{E}),\quad\operatorname{s.t.}\mathbf{X}=\mathbf{Z}\mathbf{X}+\mathbf{E} argminZ,EO(Z)+λT(E),s.t.X=ZX+E.其中,Z表示亲合度矩阵,E表示噪音.此外,O和T表示对Z和E的约束. λ \lambda λ是平衡两个公式的超参.
为了包含一个高质量的亲和矩阵,应该有如下限制:
恒等性
k-block
恒等性质是因为如上优化后的Z有 Z = Z ∗ Z Z=Z*Z Z=ZZ,块数等于k.此外,亲和性矩阵应该是标红准化的,对称的和非负的.为了实现如上性质,应该有如下公式限制:
argmin ⁡ Z , S ∥ Z − S ∥ F 2 + γ ∥ S ∥ i d + λ ∥ E ∥ 2 , 1 , s . t .   H = Z H + E , S 1 n = 1 n , S = S ⊤ , S ≥ 0 , Tr ⁡ ( S ) = k , \begin{align} \operatorname{argmin}_{\mathbf{Z},\mathbf{S}}\|\mathbf{Z}-\mathbf{S}\|_F^2+\gamma\|\mathbf{S}\|_{id}+\lambda\|\mathbf{E}\|_{2,1},\\ \mathrm{s.t.~}\mathbf{H}=\mathbf{ZH}+\mathbf{E},\\\mathbf{S}\mathbf{1}_n=\mathbf{1}_n,\mathbf{S}=\mathbf{S}^\top,\mathbf{S}\geq\mathbf{0},\operatorname{Tr}(\mathbf{S})=k, \end{align} argminZ,SZSF2+γSid+λE2,1,s.t. H=ZH+E,S1n=1n,S=S,S0,Tr(S)=k,
S为中间变量去整合整个公式的表示.第二项是恒等约束 ∥ S ∥ i d = ∥ S − S 2 ∥ F 2 \|\mathbf{S}\|_{id}=\|\mathbf{S}-\mathbf{S}^2\|_F^2 Sid=SS2F2最下一行公式分别表示列规范化,对称性和非负限制.以及S矩阵有k块. ∥ E ∥ 2 , 1 = ∑ i = 1 n ∑ i = 1 n ( [ E ] i j ) 2 \|\mathbf{E}\|_{2,1}=\sum_{i=1}^n\sqrt{\sum_{i=1}^n([\mathbf{E}]_{ij})^2} E2,1=i=1ni=1n([E]ij)2 表示 l 2.1 − norm \mathcal{l}_{2.1}-\text{norm} l2.1norm的噪声.这样,亲和矩阵M(i.e.,Z,S)可以被定义为:
m v , u = { 0 , m v , u < β , m v , u , otherwise. m_{v,u}=\begin{cases}0,&m_{v,u}<\beta,\\m_{v,u},&\text{otherwise.}\end{cases} mv,u={0,mv,u,mv,u<β,otherwise.

对比损失

具体的是:选取了 P v M = { u ∣ m v , u > 0 } \mathcal{P}_v^M=\{u\mid m_{v,u}{>}0\} PvM={umv,u>0}的样本作为正样本,负样本是剩余的节点
ℓ h t ( h v , h ~ v ) = − l o g p o v p o v + n e v , p o v = e θ ( h v , h ~ v ) τ + ∑ u ∈ P v M m v , u ⋅ e θ ( h v , h u ) τ , (6) n e v = ∑ t ∈ N v M e θ ( h v , h ~ t ) τ + ∑ t ∈ N v M e θ ( h v , h t ) τ , \begin{aligned} &\ell_{\boldsymbol{ht}}(\mathbf{h}_v,\tilde{\mathbf{h}}_v)=-log\frac{\mathrm{po}_v}{\mathrm{po}_v+\mathrm{ne}_v}, \\ &\mathrm{po}_v=\mathrm{e}^{\frac{\theta(\mathbf{h}_v,\tilde{\mathbf{h}}_v)}\tau}+\sum_{u\in\mathcal{P}_v^M}m_{v,u}\cdot\mathrm{e}^{\frac{\theta(\mathbf{h}_v,\mathbf{h}_u)}\tau},& \text{(6)} \\ &\mathrm{ne}_v=\sum_{t\in\mathcal{N}_v^M}\mathrm{e}^{\frac{\theta(\mathbf{h}_v,\tilde{\mathbf{h}}_t)}\tau}+\sum_{t\in\mathcal{N}_v^M}\mathrm{e}^{\frac{\theta(\mathbf{h}_v,\mathbf{h}_t)}\tau}, \end{aligned} ht(hv,h~v)=logpov+nevpov,pov=eτθ(hv,h~v)+uPvMmv,ueτθ(hv,hu),nev=tNvMeτθ(hv,h~t)+tNvMeτθ(hv,ht),(6)

L h e a t s = 1 2 ∣ V ∣ ∑ v ∈ V ( ℓ h t ( h v , h ~ v ) + ℓ h t ( h ~ v , h v ) ) \mathcal{L}_{heats}=\frac1{2|V|}\sum_{v\in V}\left(\ell_{ht}(\mathbf{h}_v,\tilde{\mathbf{h}}_v)+\ell_{ht}(\tilde{\mathbf{h}}_v,\mathbf{h}_v)\right) Lheats=2∣V1vV(ht(hv,h~v)+ht(h~v,hv))

文章配图文章配图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值