难度:困难
题目描述:
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:
输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
提示:
0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成
D[i][j-1]
为 A 的前 i 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们在 A 的末尾添加了一个相同的字符,那么 D[i][j]
最小可以为 D[i][j-1] + 1
;
D[i-1][j]
为 A 的前 i - 1 个字符和 B 的前 j 个字符编辑距离的子问题。即对于 A 的第 i 个字符,我们在 B 的末尾添加了一个相同的字符,那么 D[i][j]
最小可以为 D[i-1][j] + 1
;
D[i-1][j-1]
为 A 前 i - 1 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们修改 A 的第 i 个字符使它们相同,那么 D[i][j]
最小可以为 D[i-1][j-1] + 1
。特别地,如果 A 的第 i 个字符和 B 的第 j 个字符原本就相同,那么我们实际上不需要进行修改操作。在这种情况下,D[i][j]
最小可以为 D[i-1][j-1]
。
那么我们可以写出如下的状态转移方程:
若 A 和 B 的最后一个字母相同:
D[i][j]=min(D[i][j−1]+1,D[i−1][j]+1,D[i−1][j−1])
若 A 和 B 的最后一个字母不同:
D[i][j] = 1 + min(D[i][j - 1], D[i - 1][j], D[i - 1][j - 1])
class Solution {
public:
int minDistance(string word1, string word2) {
int m=word1.size();
int n=word2.size();
if(m==0||n==0){
return m>n?m:n;
}
int dp[m+1][n+1];
for(int i=0;i<m+1;i++){
dp[i][0]=i;
}
for(int i=0;i<n+1;i++){
dp[0][i]=i;
}
for(int i=1;i<m+1;i++){
for(int j=1;j<n+1;j++){
if(word1[i-1]==word2[j-1]){
dp[i][j]=min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]));
}else{
dp[i][j]=1+min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1]));
}
}
}
return dp[m][n];
}
};