扩展欧几里得&费马小定理

博客介绍了扩展欧几里得算法在求解线性同余方程ax+by=c的整数解中的应用,并提供了高效的递归求解方法。同时,提到了费马小定理,指出当p为质数时,a^p ≡ a (mod p)。文章提供了C++代码实现,并强调了解决方案的时间复杂度。
摘要由CSDN通过智能技术生成

扩展欧几里得&费马小定理

扩展欧几里得

问题:对于三个自然数 a , b , c a,b,c a,b,c,求 a x + b y = c ax+by=c ax+by=c的整数解

求解:

1. 首先判断有无解,存在解的要求是 g c d ( a , b ) ∣ c gcd(a,b) \mid c gcd(a,b)c(感性理解一下)
2. 那么现在我们只要解出 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)之后在乘上 c / g c d ( a , b ) c/gcd(a,b) c/gcd(a,b)即可
3. 之后我们再将两边同时 / g c d ( a , b ) /gcd(a,b) /gcd(a,b),得 a t x + b t y = 1 a_tx+b_ty=1 atx+bty=1 g c d ( a t , b t ) = 1 gcd(a_t,b_t)=1 gcd(at,bt)=1
4. 将等式变换 a t x + b t y = g c d ( a t , b t ) = g c d ( b t , a t m o d    b t ) = b t x + ( a t m o d    b t ) y = b t x + ( a t − ⌊ a t b t ⌋ b t ) y = a t y + b t ( x − ⌊ a t b t ⌋ y ) \begin{aligned} a_tx+b_ty&=gcd(a_t,b_t) \\ &=gcd(b_t,a_t\mod b_t) \\ &=b_tx+(a_t \mod b_t)y \\ &=b_tx+(a_t-\lfloor \frac{a_t}{b_t} \rfloor b_t)y \\ &=a_ty+b_t(x-\lfloor \frac{a_t}{b_t} \rfloor y)\end{aligned} atx+bty=gcd(at,bt)=gcd(bt,atmodbt)=btx+(atmodbt)y=btx+(atbtatbt)y=aty+bt(xbtaty)我们发现此时的 x x x变成了 y y y, y y y变成了 x − ⌊ a t b t ⌋ x-\lfloor \frac{a_t}{b_t} \rfloor xbtat,于是我们就可以递归求解 ( x , y ) (x,y) (x,y)
5. 边界条件其实和前面朴素欧几里得是一样的 b = 0 b=0 b=0的时候,我们有 a = 1 , a x + b y = 1 a=1,ax+by=1 a=1,ax+by=1那么此时 x = 1 , y = 0 x=1,y=0 x=1,y=0,这样做完的话我们用 O ( l o g ) O(log) O(log) 的时间就会得到一组 ( x , y ) (x,y) (x,y)的特殊解
6. 最后将 ( x , y ) (x,y) (x,y)乘上 c / g c d ( a , b ) c/gcd(a,b) c/gcd(a,b)

代码实现:(记得将下 x , y x,y x,y乘上 c / g c d ( a , b ) c/gcd(a,b) c/gcd(a,b)

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;

void read(int &sum)
{
	sum=0;char last='w',ch=getchar();
	while (ch<'0' || ch>'9') last=ch,ch=getchar();
	while (ch>='0' && ch<='9') sum=sum*10+ch-'0',ch=getchar();
	if (last=='-') sum=-sum;
}
int gcd(int a,int b)
{
	if (a%b==0) return b;
	else return gcd(b,a%b);
}
void EX_gcd(int a,int b,int &x,int &y)
{
	if (b==0) x=1,y=0;
	else EX_gcd(b,a%b,y,x),y-=a/b*x;	
}
int a,b,c;
signed main()
{
//	freopen("M.in","r",stdin);
//	freopen("M.out","w",stdout);
	read(a),read(b),read(c);
	int t=gcd(a,b);
	if (c%t!=0) { printf("no!"); return 0; }
	a/=t,b/=t;
	int x,y;
	EX_gcd(a,b,x,y);
	x*=c/t,y*=c/t;
	printf("yes! %lld %lld\n",x,y);
//	fclose(stdin);fclose(stdout);
	return 0;
}


费马小定理

内容: a p ≡ a ( m o d    p ) a^p \equiv a (\mod p) apa(modp)( p p p为质数)

证明:不会。。。

Tags:数论 信息学 欧几里得 费马

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值