1.功能定位与核心能力
- 智谱清言:作为智谱早期推出的对话型大模型产品,主打通用对话、知识问答和基础工具调用(如联网搜索、代码生成等)。2023年已支持Function Call和智能体编排功能。
- AutoGLM沉思:是智谱清言的升级形态,定位为深度研究+操作执行一体化Agent,具备三大核心能力:
- 深度思考:通过GLM-Z1-Rumination模型实现长程推理、自我验证和动态调整;
- 感知与操作:直接操控设备GUI界面(如浏览器、手机屏幕),完成数据检索、报告生成等复杂任务;
- 任务闭环:从规划到执行全流程自动化,例如商业调研、稿件撰写并投稿。
2.技术架构差异
- 模型基座:
- 智谱清言:基于GLM-4系列通用模型,侧重多轮对话和基础工具调用;
- AutoGLM沉思:采用GLM-4-Air-0414(32B参数),专为智能体任务优化,支持实时联网搜索、动态工具调用。
- 推理能力:
- AutoGLM沉思引入GLM-Z1-Air推理模型,速度比DeepSeek-R1快8倍,成本降低至1/30;
- 智谱清言未强调专用推理优化,更依赖通用模型能力。
3.交互方式与落地场景
- 操作方式:
- 智谱清言:基于API或简单插件调用工具,用户需手动介入多步骤任务;
- AutoGLM沉思:通过图形界面(GUI)模拟人类操作(如点击、输入),实现端到端自动化。
- 典型场景:
- 智谱清言:适合日常问答、文本生成等轻量级需求;
- AutoGLM沉思:聚焦深度研究类任务(如万字行业报告生成、商业竞品分析)和操作密集型任务(如自动投稿、数据抓取)。
4.使用门槛与开放性
- 部署方式:
- 智谱清言:提供网页端、App等多平台访问;
- AutoGLM沉思:需下载PC客户端或虚拟机版本,依赖本地权限实现设备操控。
- 开源计划:
- AutoGLM沉思所有模型将于4月14日全面开源;
- 智谱清言未提及同等程度的开源安排。
5.商业化与生态定位
- 免费策略:两者均提供免费使用,但AutoGLM沉思不限量开放深度研究功能,对标OpenAI DeepResearch(需高价订阅);
- 生态角色:
- 智谱清言是用户入口级产品,覆盖基础需求;
- AutoGLM沉思是开发者与高阶用户工具,推动智能体技术落地。
总结
AutoGLM沉思是智谱清言在智能体技术上的高阶延伸,通过深度思考+GUI操作实现了从“对话”到“执行”的跨越。两者形成互补:用户可通过智谱清言满足日常需求,而复杂研究或自动化任务可无缝切换至AutoGLM沉思完成。